Information security is one of the key issues in e-commerce Internet of Things (IoT) platform research. The collusive spamming groups on e-commerce platforms can write a large number of fake reviews over a period of time for the evaluated products, which seriously affect the purchase decision behaviors of consumers and destroy the fair competition environment among merchants. To address this problem, we propose a network embedding based approach to detect collusive spamming groups. First, we use the idea of a meta-graph to construct a heterogeneous information network based on the user review dataset. Second, we exploit the modified DeepWalk algorithm to learn the low-dimensional vector representations of user nodes in the heterogeneous information network and employ the clustering methods to obtain candidate spamming groups. Finally, we leverage an indicator weighting strategy to calculate the spamming score of each candidate group, and the top-k groups with high spamming scores are considered to be the collusive spamming groups. The experimental results on two real-world review datasets show that the overall detection performance of the proposed approach is much better than that of baseline methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.