In this paper, glass fiber fabric reinforced polyphenylene sulfide composites were prepared by hot pressing. The effects of glass fibre modification and hot pressing temperature on the properties of the composites were investigated using a scanning electron microscope, infrared spectrometer, universal testing machine, and DIGEYE digital imaging colour measurement system. The results show that after the treatment with a silane coupling agent, the silane coupling agent was more uniformly distributed on the surface of the glass fibres, and the bonding effect between the glass fibre fabric and polyphenylene sulphide was significantly improved. The strength of the composites increased and then decreased with the increase of hot pressing temperature, and the surface colour of the composites became darker and darker. When the hot-pressing temperature is 310 °C, the mechanical properties of glass fabric-reinforced polyphenylene sulfide composites are at their best, the tensile strength reaches 51.9 MPa, and the bending strength reaches 78 MPa.
The process of weaving three-dimensional spacer fabrics on double-shed rapier looms is analyzed. In order to solve the tension control problem of the longitudinal warp non-closed shed, a brief opening model of heald frame is constructed in this paper, and the opening tension is analyzed. The results show that the longitudinal warp tension has a compound function relationship with the length of the rear shed of the loom. When the distance of the front shed and the height of the ground warp in the weaving process are known, the guide bar position of the warp drop frame can be effectively measured by the ratio of the ground warp opening elongation and the ground warp length. In this way, the tension during weaving of multiple sets of warp yarns is uniform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.