In agriculture, barnyard grass (Echinochloa crusgalli L.) is one of the most harmful weeds in rice fields now. In order to identify active ingredients which had inhibiting effect on barnyard grass (Echinochloa crusgalli L.), we evaluated several possible natural plant essential oils. Essential oils from twelve plant species showed inhibitory activity against barnyard grass seedlings and root length. The garlic essential oil (GEO) had the most significant allelopathic effect (EC50 = 0.0126 g mL-1). Additionally, the enzyme activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) increased during the first 8 hours of treatment at a concentration of 0.1 g mL-1 and then declined. The activities of CAT, SOD and POD increased by 121%, 137% and 110% (0–8h, compared to control), and decreased (8–72h, compared to the maximum value) by 100%, 185% and 183%, respectively. The total chlorophyll content of barnyard grass seedlings decreased by 51% (0–72h) continuously with the same dosage treatment. Twenty constituents of GEO were identified by gas chromatography-mass spectrometry, and the herbicidal activity of two main components (diallyl sulfide and diallyl disulfide) was evaluated. Results showed that both components had herbicidal activity against barnyard grass. GEO had a strong inhibitory effect (~88.34% inhibition) on barnyard grass growth, but safety studies on rice showed it did not have much inhibitory effect on rice seed germination. Allelopathy of GEO provide ideas for the development of new plant-derived herbicides.
Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164 ℃, 165 ℃ (SAEO − 165), 169 ℃, 170 ℃ 175 ℃ and 180 ℃. The SAEO − 165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified Eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and β-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. Additionally, defense enzymes in E. crus-galli and rice seedling showed decreased activities, but only CAT levels were affected under SAEO treatment. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.