The in-wheel electric vehicle with distributed drive units has better stability and flexibility than traditional centralized drives, but may encounter a higher failure rate due to additional actuators and sensors, especially that the faults of the wheel-side position sensor make motor torque out of control. To overcome this problem, a fault-tolerant control strategy with a multi-states switching method is proposed. The strategy judges the sensor failure by verifying redundant speed information, realizes sensorless control schemes by flux-observer based algorithm in high-speed range and I-F control algorithm in low-speed range with low acoustic noise, and applies adaptive transition process between different control schemes. To pursuit high stability, the signal-to-noise analysis for fault judgment due to sensorless estimation accuracy is discussed. Meanwhile, the principle of I-F resonant oscillations during the transition process is initially deduced in detail, and the conclusion of stability condition is obtained. Finally, the influence of system parameters on resonance performance is analyzed by simulation, and the effectiveness and reliability of the proposed strategy for the risk-controlling process are verified by experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.