Background
MicroRNAs (miRNAs) and Twist1-induced epithelial-mesenchymal transition (EMT) in cancer cell dissemination are well established, but the involvement of long noncoding RNAs (lncRNAs) in Twist1-mediated signaling remains largely unknown.
Methods
RT-qPCR and western blotting were conducted to detect the expression levels of lncRNA JPX and Twist1 in lung cancer cell lines and tissues. The impact of JPX on Twist1 expression, cell growth, invasion, apoptosis, and in vivo tumor growth were investigated in lung cancer cells by western blotting, rescue experiments, colony formation assay, flow cytometry, and xenograft animal experiment.
Results
We observed that lncRNA JPX was upregulated in lung cancer metastatic tissues and was closely correlated with tumor size and an advanced stage. Functionally, JPX promoted lung cancer cell proliferation in vitro and facilitated lung tumor growth in vivo. Additionally, JPX upregulated Twist1 by competitively sponging miR-33a-5p and subsequently induced EMT and lung cancer cell invasion. Interestingly, JPX and Twist1 were coordinately upregulated in lung cancer tissues and cells. Mechanically, the JPX/miR-33a-5p/Twist1 axis participated in EMT progression by activating Wnt/β-catenin signaling.
Conclusions
These findings suggest that lncRNA JPX, a mediator of Twist1 signaling, could predispose lung cancer cells to metastasis and may serve as a potential target for targeted therapy.
MicroRNAs (MiRNAs) have been found to be dysregulated in lung cancer tissues compared to their matched paracancerous tissues. However, the roles of miRNAs in peripheral blood as potential biomarkers for early diagnosis of lung cancer remain poorly understood. Here we found that miR-33a-5p and miR-128-3p were down-regulated in lung cancer tissues and cell lines. The expression levels of miR-33a-5p and miR-128-3p in lung cancer tissues were significantly correlated to TNM stages. MiR-128-3p in lung cancer tissues was also remarkably related to smoking and tumor size. The relative expression levels of miR-33a-5p and miR-128-3p were positively correlated in lung cancer tissues. Notably, miR-33a-5p and miR-128-3p in whole blood of lung cancer patients or early-stage lung cancer patients (TNM stage I-II) were lowly expressed as compared with that in healthy controls. The receiver operating characteristic curve (ROC) analyses revealed higher area under the ROC curve (AUC) values and higher sensitivity/specificity of miR-33a-5p and miR-128-3p alone and in combination were superior to that of traditional tumor markers (CYFR21-1, NSE and CA72-4). Importantly, both miR-33a-5p and miR-128-3p in whole blood were highly stable even under different harsh conditions. The results demonstrate that tumor suppressor miR-33a-5p/miR-128-3p in whole blood can serve as novel biomarkers for the early detection of lung cancer.
Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.