Ultra-high performance concrete (UHPC), a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD), mercury intrusion porosimetry (MIP) and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO 2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH)2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.
ABSTRACT.To investigate the mixing amount of graphene oxide and water cement ratio on the microstructure and mechanical properties of graphene oxide reinforced cement based composite material, graphene oxide suspension was developed using improved Hummers method, and the structure, size and morphology of graphene oxide were represented using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and AFM. The results demonstrated that the bending and compressive strength of graphene oxide reinforced cement based composite material improved firstly and then declined with the increase of the mixing amount of graphene oxide, and moreover the improvement of the bending strength was obvious than that of the compressive strength. When the content of graphene oxide was 0.03%, the bending strength reached the maximum, 13.73 MPa. Under a high water cement ratio, the addition of graphene oxide was more effective in enhancing the strength of cement mortar. The representation of the microstructure of cement based composite material with scanning electron microscope (SEM) suggested that graphene oxide could optimize the microstructure of cement hydration products, improve the pore structure of set cement, reduce the volume of micropore in set cement, and increase the compactness of set cement, i.e. apparently strengthen the toughening effect of set cement. The research achievements are useful to improve the mechanical properties of cement based composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.