DEXD/H box helicase 60 (DDX60) is a new type of DEAD-box RNA helicase, which is induced to express after virus infection. It might involve in antiviral immunity by promoting RIG-I-like receptor-mediated signal transduction. In addition, previous studies had shown that the expression of DDX60 is related to cancer, but there was still a lack of relevant research in breast cancer. In this study, we used the information of patients with breast cancer in the TCGA database for statistical analysis and found that the breast cancer patients with low expression of DDX60 exhibited radiosensitivity. Comparing the radiotherapy groups with the nonradiotherapy groups, for patients with low expression of DDX60, the adjusted hazard ratio (HR) values for radiotherapy were 0.244 (0.064–0.921) and 0.199 (0.062–0.646) in the training and validation datasets, with the p values 0.040 and 0.007, respectively. However, for patients with high expression of DDX60, the adjusted hazard ratio (HR) values were 3.582 (0.627–20.467) and 2.421 (0.460–12.773), with the p values 0.054 and 0.297, respectively. These results suggested that the expression of DDX60 might strongly associate with individualized radiosensitivity in patients with breast cancer.
BackgroundLower-grade glioma (LGG) is a type of central nervous system tumor that includes WHO grade II and grade III gliomas. Despite developments in medical science and technology and the availability of several treatment options, the management of LGG warrants further research. Surgical treatment for LGG treatment poses a challenge owing to its often inaccessible locations in the brain. Although radiation therapy (RT) is the most important approach in this condition and offers more advantages compared to surgery and chemotherapy, it is associated with certain limitations. Responses can vary from individual to individual based on genetic differences. The relationship between non-coding RNA and the response to radiation therapy, especially at the molecular level, is still undefined.MethodsIn this study, using The Cancer Genome Atlas dataset and bioinformatics, the gene co-expression network that is involved in the response to radiation therapy in lower-grade gliomas was determined, and the ceRNA network of radiotherapy response was constructed based on three databases of RNA interaction. Next, survival analysis was performed for hub genes in the co-expression network, and the high-efficiency biomarkers that could predict the prognosis of patients with LGG undergoing radiotherapy was identified.ResultsWe found that some modules in the co-expression network were related to the radiotherapy responses in patients with LGG. Based on the genes in those modules and the three databases, we constructed a ceRNA network for the regulation of radiotherapy responses in LGG. We identified the hub genes and found that the long non-coding RNA, DRAIC, is a potential molecular biomarker to predict the prognosis of radiotherapy in LGG.
The PD-1/PD-L1 pathway plays an important role in the treatment of cancers as immune checkpoint. However, the association of genes involved in the PD-L1 pathway and radiosensitivity of gastric cancer has not been fully characterized. This study aims to explore the relationship between the expression levels of genes involved in the PD-L1 pathway and radiosensitivity for gastric cancer patients. A total of 367 patients with clinical survival information and radiotherapy information were obtained in The Cancer Genome Atlas (TCGA). Genes involved in the PD-L1 pathway were categorized into high and low expression level groups according to the median value. The Cox proportional hazards model was used to find the association between gene expression level and radiosensitivity. The results show that high expression levels of CD274, EGFR, RAF1, RPS6KB1, PIK3CA, MTOR, CHUK, NFKB1, TRAF6, FOS, NFATC1, and HIF1A were associated with radiosensitivity of gastric cancer. While low expression level of HRAS was also associated with radiosensitivity in gastric cancer. The rates of a new tumor event and disease progression were lower for radiosensitivity patients than other patients. The relationship between the expression level of CD274 and other genes involved in the PD-L1 pathway is significant. GO (Gene Ontology) analysis shows that the biological process of 13 genes was mainly related to innate immune response activating the cell surface receptor signaling pathway. KEGG analysis demonstrated that 13 genes in gastric cancer are mainly related to the PD-L1 expression and PD-1 checkpoint pathway in cancer. The correlation between the expression level of CD274 and other genes involved in the PD-L1 pathway is significant. The present study offered more evidence for using PD-L1 and genes involved in the PD-L1 pathway as potential biomarkers to predict radiosensitive patients with gastric cancer.
Human gene GLIS family zinc finger 2 (GLIS2) is a member of GLI-similar zinc finger protein family. Previous studies indicated GLIS2 gene involved in tumorigenesis mechanisms. However, the association between GLIS2 expression and radiosensitivity of gastric cancer has not been well understood. In this study, we used the gastric cancer database in TCGA, and significant association was observed between the low expression of GLIS2 and radiosensitivity of patients with gastric cancer. The adjusted HR values for radiotherapy were 0.162(0.035-0.756) and 0.089(0.014-0.564), with p values 0.021 and 0.010, respectively, in training and testing data, for these patients with low expression of GLIS2, while for patients with high expression of GLIS2, there was no significant survival difference between radiotherapy and nonradiotherapy groups. The adjusted HR were 0.676(0.288-1.586) and 0.508(0.178-1.450), with p values 0.368 and 0.206 in training and testing data, respectively. Further study showed that, for low expression patients, radiotherapy did not significantly increase new tumor event rate and disease progression rate, which partially supported our assumption. These results suggested that low expression of GLIS2 might significantly associate with the radiosensitivity of patients with gastric cancer. The GLIS2 gene might be a potential effective molecular marker of gastric cancer for precise radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.