Forming limit diagram (FLD) is the most intuitive method to evaluate and analyze the forming performance of sheet metal, which is widely used in production. To examine the formability of AZ31 magnesium alloy and 7050 aluminum alloy, the simplified bulging models based on the Nakazima experiment are established by ABAQUS finite element (FE) software, and the maximum punch force criterion is adopted as the instability criterion. The forming limit diagrams of 7050 high-strength aluminum alloy at room temperature and AZ31 magnesium alloy at warm working conditions are obtained by extracting the in-plane strain of the adjacent element of the maximum strain element at the moment of instability. Compared with experimental observation shows that the Nakazima virtual model established in this paper can accurately predict FLD. In addition, the influences of lubrication conditions and virtual punching speeds on the bulging process of AZ31 and AA7050 sheet metals are also investigated. The results show that the better the lubrication environment, or the lower the punching speed, the better the formability of the sheet, and reducing the punching speed has a more significant improvement effect on the formability of AZ31 sheets.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.