IntroductionThe response mechanism of Rhododendron simsii and its endophytic microorganism to heat stress is still unclear.MethodsThe light incubator was used to set the temperature gradients, and the control (CK) was (day/night: 14/10 h) 25/22°C, the moderate-heat-stress (MHS) was 35/30°C and the high-heat-stress (HHS) was 40/35°C.ResultsCompared with CK, MHS significantly increased the contents of malondialdehyde, hydrogen peroxide, proline, and soluble sugar, as well as the activities of catalase and peroxidase in leaf, while HHS increased the activities of ascorbate peroxidase, and decreased chlorophyll content. Compared with CK, MHS reduced soil available nitrogen (N) content. Both heat stress changed the endophytic microbial community structure in roots. MHS enriched Pezicula and Paracoccus, while HHS significantly enriched Acidothermus and Haliangium. The abundance of Pezicula positively correlated with the contents of chlorophyll a and proline in leaf, and negatively correlated with soil ammonium N content. The abundance of Pezicula and Haliangium positively correlated with soluble sugar and malondialdehyde contents, respectively.ConclusionsOur results suggest that root endophytic microorganisms play an important role in helping Rhododendron resisting heat stress, mainly by regulating soil N content and plant physiological characteristics.
Environmentally friendly remediation agents with good biocompatibility have been a research target in heavy-metal pollution remediation in agriculture, which is of great significance for food safety and human health. Disc-shaped...
Soil organic carbon (SOC) largely influences soil quality and sustainability. The effects of no-till (NT) and crop straw return practices (SR) on soil organic carbon sequestration have been well documented. However, the mechanism of soil bacterial community in regulating soil organic carbon under NT and SR remains unclear. In this study, we investigated the impacts of tillage (conventional tillage (CT) and NT) and crop straw return practices (crop straw removal (NS) and SR) on topsoil layer (0−5 cm) bacterial community, CH4 and CO2 emissions and SOC fractions in rice-wheat cropping system. Overall, in the wheat season following the annual rice-wheat rotation in two cycles, NT significantly increased SOC by 4.4% for 1−2 mm aggregates in the 0−5 cm soil layer, but decreased CO2 emissions by 7.4%. Compared with NS, SR notably increased the contents of SOC in the topsoil layer by 6.5% and in macro-aggregate by 17.4% in 0−5 cm soil layer, and promoted CH4 emissions (by 22.3%) and CO2 emissions (by 22.4%). The combination of NT and NS resulted in relatively high SOC and low CH4 emissions along with high bacterial community abundance. The most abundant genus under different treatments was Gp6, which significant impacted SOC and MBC. Bacterial communities like Subdivision3 had the most impact on CH4 emissions. Structural equation modeling further suggested that the soil bacterial community indirectly mediated the SOC through balancing SOC in 1−2 mm aggregates and CH4 emissions. This study provides a new idea to reveal the mechanism of short-term tillage and straw return on SOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.