The anode potential in microbial fuel cells (MFCs) defines the possible metabolic energy gain (PMEG) for the bacteria growth. This study focused on the mechanism behind anode potential controlling microbial growth and power generation in MFCs from an energy perspective. Four sets of MFCs were operated with varied conditions: three with different applied anode potential (-160, 0, and 400 mV vs standard hydrogen electrode (SHE)) and one with an external resistor (500 Omega). A model strain Geobacter sulfurreducens was used here. The evolution of biomass was measured and its quantitative relationship with PMEG was analyzed. Linear voltammetry and cyclic voltammetry were also carried out. Results indicated a notable gain in biomass and power density when anode potential increased from -160 to 0 mV. However, no gain in biomass and power generation was detected when anode potential further increased to 400 mV. At anode potential of 0 mV and below, G. sulfurreducens extracted a significant portion of PMEG for growth, while utilization of PMEG significantly decreased at 400 mV. Furthermore, the anode potential has a minor influence on individual G. sulfurreducens cell activity, and the maximum power density of MFC proportionate to biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.