Virtual Influencers (VIs) are computer-generated characters, many of which are often visually indistinguishable from humans and interact with the world in the first-person perspective as social media influencers. They are gaining popularity by creating content in various areas, including fashion, music, art, sports, games, environmental sustainability, and mental health. Marketing firms and brands increasingly use them to capitalise on their millions of followers. Yet, little is known about what prompts people to engage with these digital beings. In this paper, we present our interview study with online users who followed different VIs on Instagram beyond the fashion application domain. Our findings show that the followers are attracted to VIs due to a unique mixture of visual appeal, sense of mystery, and creative storytelling that sets VI content apart from that of real human influencers. Specifically, VI content enables digital artists and content creators by removing the constraints of bodies and physical features. The followers not only perceived VIs' rising popularity in commercial industries, but also are supportive of VI involvement in non-commercial causes and campaigns. However, followers are reluctant to attribute trustworthiness to VIs in general though they display trust in limited domains, e.g., technology, music, games, and art. This research highlights VI's potential as innovative digital content, carrying influence and employing more varied creators, an appeal that could be harnessed by diverse industries and also by public interest organisations.
The rise of social media has changed the nature of the fashion industry. Influence is no longer concentrated in the hands of an elite few: social networks have distributed power across a broader set of tastemakers. To understand this new landscape of influence, we created FITNet --- a network of the top 10k influencers of the larger Twitter fashion graph. To construct FITNet, we trained a content-based classifier to identify fashion-relevant Twitter accounts. Leveraging this classifier, we estimated the size of Twitter's fashion subgraph, snowball sampled more than 300k fashion-related accounts based on following relationships, and identified the top 10k influencers in the resulting subgraph. We use FITNet to perform a large-scale analysis of fashion influencers, and demonstrate how the network facilitates discovery, surfacing influencers relevant to specific fashion topics that may be of interest to brands, retailers, and media companies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.