DNA computing has become the focus of computing research due to its excellent parallel processing capability, data storage capacity, and low energy consumption characteristics. DNA computational units can be precisely programmed through the sequence specificity and base pair principle. Then, computational units can be cascaded and integrated to form large DNA computing systems. Among them, DNA strand displacement (DSD) is the simplest but most efficient method for constructing DNA computing systems. The inputs and outputs of DSD are signal strands that can be transferred to the next unit. DSD has been used to construct logic gates, integrated circuits, artificial neural networks, etc. This review introduced the recent development of DSD-based computational systems and their applications. Some DSD-related tools and issues are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.