As a benchmark semiconducting polymer, poly(3-hexyl-thiophene) (P3HT) has been broadly used to construct a wide range of organic electronic devices such as photovoltaic cells, photodetectors, thermoelectrics, and transistors. In the...
The power conversion efficiencies (PCEs) of organic photovoltaic cells employing donor (polymer):acceptor (small molecule) bulk heterojunction (BHJ) are being rapidly improved. The phase segregation along vertical (film‐depth) direction of the active layer, referring to vertical immiscibility between donor and acceptor, leads to vertically varied and nonlinearly distributed composition, optical and electronic properties. However, the correlation between vertical miscibility and photovoltaic performance is still confusing. Here, it is semi‐empirically found that such vertical variations induced by vertical immiscibility deteriorate PCE. Subsequently, using PM6:Y6‐based binary and ternary BHJ as examples, a combined statistical, experimental, and numerical investigation on the dependence of photovoltaic performance on vertical miscibility is reported. The vertical phase evolution of BHJ significantly depends on solvents and processing methods. As compared with other donor:acceptor systems, polymer:Y6 deposited from appropriate solvents could have the best vertical miscibility which is nearly independent on film‐depth, leading to a higher PCE. PM6:Y6:fullerene ternary blends also have a good and uniform vertical miscibility, forming spatially well‐mixed ternary BHJ. Consequently, under this design guideline, the optimized film‐depth‐dependent miscibility contributes to optimized vertical distribution of optical and electronic properties, leading to an optimized PCE 17.1% with a low sensitivity to fluctuation of film thickness.
Upon incorporating S⋯O noncovalent conformational locks and side chain engineering, the optical absorption and blend film morphology of molecular acceptors are effectively tuned, resulting in an enhanced photocurrent and thus a higher responsivity (from 70.5 mA W−1 to 291.3 mA W−1) for P3HT-based OPDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.