Global climate models predict that the increasing Amazonian-deforestation rates cause rising temperatures (increases of 1.8 • C to 8 • C under different conditions) and Amazonian drying over the 21st century. Observations in the 20th century also show that over the warmer continent and the nearby western South Atlantic Ocean, the lower-layer equatorial westerly wind (LLEWW) strengthens with the initiation of tropical cyclones (TCs). The warmer-continent-related LLEWW can result from the Coriolis-force-induced deflection of the cross-equatorial flow (similar to the well-known heat-island effect on sea breeze) driven by the enhanced land-sea contrast between the warmer urbanized continents and relatively cold oceans. This study focuses on the processes relating the warmer-continent-related LLEWW to the TC initiation and demonstrates that the LLEWW embedded in trade easterlies can directly initiate TCs by creating cyclonic wind shears and forming the intertropical convergence zone. In addition to this direct effect, the LLEWW combined with the rotating Earth can boost additional updraft vapor over the high sea-surface temperature region (factor 1), facilitating a surface-to-midtroposphere moist layer (factor 2) and convective instability (factor 3) followed by diabatic processes. According to previous studies, the diabatic heating in a finite equatorial region also activates TCs (factor 4) on each side of the Equator with weak vertical shear (factor 5). Factors 1-5 are favorable conditions for the initiation of severe TCs. Statistical analyses show that the earliest signal of sustained LLEWW not only leads the earliest signal of sustained tropical depression by >3 days but also explains a higher percentage of total variance. , 2012: The potential impacts of warmer-continentrelated lower-layer equatorial westerly wind on tropical cyclone initiation.
Abstract. No hurricane is detected in the tropics off the Brazilian coast due to the lack of initial conditions (e.g., the weak vertical shear of horizontal wind) despite that high sea surface temperature is available. According to previous studies, the initial conditions (as the ingredients of hurricane's embryo) are related so that the thick warm-and-moist layer (due to the updraft vapour) below a cold-and-dry layer frames the convective instability which enhances diabatic processes accompanied by tropical cyclones with the weak vertical shear. So the basic question is how, starting with an internal-disturbance-free balance-situation, external forces create the rapidly-upward acceleration of moist air at the warm sea surface. The answer is revealed by the vertical-momentum equation which shows that boosted by the external-force-induced significant lower-layer equatorial westerly wind (LLEWW), the upward (unit-mass) acceleration could be as significant as the midlatitude Coriolis force. Besides creating cyclonic vortices through the upward acceleration and diabatic processes, the external-force-induced significant-LLEWW could directly create cyclonic wind shears along with easterly jets for the low-level cyclonic vorticity through reducing the peak value of zonally-homogeneous trade easterlies (centered at the Equator between the Northern and Southern Hemisphere subtropical high-belts). We emphasize external forces to avoid the ''chicken-and-egg'' problem accompanying nonlinear interactions of internal-forcing processes. The external-force-induced significant-LLEWW could result from the deflection of the cross-equatorial flow characterized by the seasonal shift coincident with that of locations of most embryos. This significant cross-equatorial flow is driven by the significant differential heating between the largest continent with the highest plateau and the largest ocean with the warm pool located to the east and on the equatorward side of the continent on the rotating Earth. Unfortunately, in the tropics off the Brazilian coast, the differential heating is weak between the relatively-small ocean and land mostly covered by tropical rainforest. No significant-LLEWW means no hurricane's embryo. A warm spawning ground without the embryo means no hurricane. Our investigation suggests that the external-force-induced significant-LLEWW embedded in the significant trade easterlies over the warm ocean be necessary and sufficient for making the embryo originate in an internal-disturbance-free balance-situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.