The recognition of stomatological disorders and the classification of dental caries are important areas of biomedicine that can hugely benefit from machine learning tools for the construction of relevant mathematical models. This paper explores the possibility of using reflectivity data to distinguish between healthy tissues and caries by deep learning and multilayer convolutional neural networks. The experimental data set includes more than 700 observations recorded in the stomatology laboratory. For rigor, the results obtained from the deep learning systems are compared with those evaluated for selected sets of features estimated for each observation and classified by a decision tree, support vector machine (SVM), k-nearest neighbor, Bayesian methods, and two-layer neural networks. The classification accuracy obtained for the deep learning systems was 98.1% and 94.4% for data in the signal and spectral domains, respectively, in comparison with an accuracy of 97.2% and 87.2% evaluated by the SVM method. The proposed method conclusively demonstrates how the artificial intelligence and deep learning methodology can contribute to improved diagnosis of dental problem in stomatology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.