We present a taxonomically complete and topologically robust molecular phylogeny of the Middle American heroine cichlids based on which we review their diversity and genus-level systematics. In order to ascertain the diversity of the group and its phylogeny we have used three nested taxon sampling analyses of the concatenated nDNA/mtDNA datasets and additionally to these analyses we present a summary of the results of a new Next Generation Sequencing-generated nuclear phylogeny based on a data set of ~ 140,000 informative characters. The NGS ddRAD phylogeny has a species-level sampling covering virtually all species (including the enigmatic Cichlasoma microlepis Dahl, 1960) with multiple sequenced specimens per species. Based on our results the Middle American heroine cichlids are made up of three main clades. The three clades (the herichthyines, the amphilophines, and the astatheroines) are however not each other sister groups since they are interspersed with South American (Australoheros, Caquetaia, Chocoheros, Heroina, Mesoheros) and Antillean (Nandopsis) genera and they represent probably two separate colonization events of Middle America from South America, probably via the Antilles. Our study reveals many cases of cytonuclear discordance and/or introgressive hybridization both at the genus and deeper levels stressing the importance to study the nuclear and mitochondrial phylogenetic signals independently and not solely in concatenated analyses. We have found that a great majority of morphological characters are ecologically correlated and that they form only a limited number of functionally-determined combinations – i.e. ecomorphs. We have found five main cranial ecomorphs but only two postcranial ecomorphs (the lotic and lentic ecomorphs, plus the undifferentiated ancestral character combination). The cranial and postcranial ecomorphs are not combined completely randomly having produced thirteen modular whole-body ecomorphs. Both the cranial and postcranial ecomorphs, and even their combinations, have evolved repeatedly in the Middle American cichlids in the same habitats both in sympatry as well as in allopatry. Our analyses of the diversity of Middle American cichlid clade support the existence of 31 genera in Middle America (plus six in South America and one in the Greater Antilles) as separate evolutionary lineages occupying separate adaptive zones. Nine new genera are described here for species and species groups that have lacked a genus level name to this day or were associated with other unrelated genera. We also review the species level diversity based on the mtDNA cytb gene population-level analysis. Furthermore, we provide a new biogeographical analysis of the group which explains their evolutionary history and demonstrates that biogeography is a much better indicator of evolutionary relationships in this fish group than are most morphological characters due to their ecological correlation.
The last decade has seen an extensive development of the field of nanomaterials which are currently being used in their first commercial applications. This rapid development is necessarily connected with certain technological demands. This paper describes a technology for the manufacture of nanomaterials from solutions by electrostatic spinning or spraying. Although this method has been well known since the last century, there are still only a few high-quality devices that can be used for the research of new nanomaterials. The main reason for this is that the process of nanomaterials manufacturing is influenced by numerous processing parameters which need to be properly regulated, and furthermore all device components must be resistant to interference from high voltage. The technological requirements are thus stringent. Moreover, such a device must be multifunctional, compact and affordable. This paper describes the technical aspects of a unique laboratory device, i.e., device modules and central control, measured processing parameters, and their effect on the produced materials. The developed laboratory device meets the most demanding criteria for a nanotechnological laboratory device and helps facilitate and speed up the research and development of new nanomaterials produced in high electrostatic field.
Non-invasive optical diagnostic methods allow important information about studied systems to be obtained in a non-destructive way. Complete diagnosis requires information about the chemical composition as well as the morphological structure of a sample. We report on the development of an opto-mechanical probe that combines Raman spectroscopy (RS) and optical coherence tomography (OCT), two methods that provide all the crucial information needed for a non-invasive diagnosis. The aim of this paper is to introduce the technical design, construction and optimization of a dual opto-mechanical probe combining two in-house developed devices for confocal RS and OCT. The unique benefit of the probe is a gradual acquisition of OCT and RS data, which allows to use the acquired OCT images to pinpoint locations of interest for RS measurements. The parameters and the correct functioning of the probe were verified by RS scanning of various samples (silicon wafer and ex vivo tissue) based on their OCT images - lateral as well as depth scanning was performed. Both the OCT and RS systems were developed, optimized and tested with the ultimate aim of verifying the functionality of the probe. Picture: Schematic illustration and visualization of the developed RS-OCT probe.
We reconstruct the historical biogeography of cichlid fishes endemic to the trans-Andean region of NW South America. DNA sequences were used to study historical biogeography of the cichlid genera Andinoacara (Cichlasomatini) and Mesoheros (Heroini). Two eventbased methodological approaches, parsimony-based Statistical Dispersal-Vicariance Analysis (S-DIVA) and likelihood-based Dispersal-Extinction Cladogenesis (DEC in Lagrange) were used for ancestral-area reconstructions. Molecular clock analysis of the whole group of Neotropical Cichlidae (using mtDNA and nucDNA markers) was calibrated using BEAST by six known cichlid fossils. The historical biogeography of both studied trans-Andean cichlid genera is best explained by a series of vicariance events that fragmented an ancestrally wider distribution. Both genera have a highly congruent vicariant historical biogeography in their shared distribution in the Colombian-Ecuadorian Choco. The Andean uplift and formation of the Central American isthmus strongly impacted the distribution patterns of the freshwater ichtyofauna in the NW Neotropics as suggested by the historical biogeography of the two studied cichlid groups. Despite strong congruence in their historical biogeography the two studied cichlid lineages (part of the tribe Cichlasomatini and Heroini, respectively) have highly different evolutionary substitution rates in the studied mtDNA cytb marker.
The 4SPIN ® desktop laboratory device has been developed for the deposition of nanomaterials dedicated not only to medical applications, but also to other fields such as nanoelectronics, optics, filtration, etc. The apparatus integrates various methods to enable the preparation of nanostructured materials according to researching demands. Nine principally different emitters (most of them are usable in the method called electroblowing) and six different collectors enable researchers to perform various types of experiments. This allowed nanofibrous materials with different microscopic and macroscopic structures to be successfully prepared. The 4SPIN® laboratory device was developed at Contipro Biotech Ltd. and seven principles used were patented. The device has been certified for electrical safety by the CE mark and has been marketed since January 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.