Recent studies have suggested that retinol binding protein 4 (RBP4), an adipocytokine related to insulin resistance (IR), may play an important role in the development of atherosclerosis and cardiovascular diseases (CVD). Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is one of the most common causes of atherosclerosis. Hyperinsulinism promotes proliferation of VSMCs through the MAPK pathway. However, whether RBP4 is involved in insulin-induced proliferation of VSMCs leading to atherosclerosis remains unclear. In the present study, we evaluated the role of RBP4 and the potential relevance of signaling pathways in this process. Different concentrations of RBP4 (1 and 4 μg/ml) were added to rat aortic smooth muscle cells (RASMCs) during insulin-induced proliferation. The levels of cell growth signaling pathway proteins ERK1/2, p-ERK1/2, JAK2, p-JAK2, STAT3 and p-STAT3 were assessed by western blotting in order to identify the pathway(s) that are activated during insulin-induced proliferation. The specific inhibitors of ERK1/2 (PD98059) and JAK2 (AG490) were used to confirm our findings. Insulin induced proliferation of RASMCs in a concentration- and time-dependent manner, and increased the expression of ERK1/2, p-ERK1/2, JAK2, p-JAK2, STAT3 and p-STAT3 in a time-dependent manner. RBP4 enhanced insulin-induced proliferation of RASMCs and expression of p-ERK1/2 and p-JAK2. RBP4-induced proliferation of RASMCs was reduced by the ERK1/2 inhibitor, while it was unaffected by the JAK2 inhibitor. These results suggest that RBP4 mediates VSMC proliferation induced by insulin via activation of the MAPK pathway, and highlight RBP4 as a modulator of atherosclerosis in hyperinsulinemia, therby enhancing our understanding on a number of unexpected aspects of CVD.
Retinol-binding protein 4 (RBP4) is a newly discovered adipocytokine related to insulin resistance (IR). Hyperinsulinemia and IR are the major risk factors for cardiovascular diseases (CVD). The role of RBP4 in CVD has not yet been determined. The present study was designed to analyze the correlation of RBP4 and CVD risk factors and to evaluate the role of RBP4 in proliferation of vascular smooth muscle cells during hyperinsulinemia and the underlying mechanisms. Plasma RBP4 concentration, IR-related indexes, and cardiovascular risk factors were measured from blood samples of hyperinsulinemic rats (HIns) and control SD rats (Cons). The vascular morphology and the expression of ERK1/2, p-ERK1/2 in arterial tissues of rats were assessed. Different concentrations of RBP4 (1, 4 μg/ml) were used as intervention factor during insulin-induced aortic smooth muscle cells (RASMCs) proliferation. The expression of cell growth signaling pathways was assessed to identify the active pathway during this proliferation. Specifically, ERK1/2 inhibitor PD98059 and JAK2 inhibitor AG490 were used to detect it. RBP4 expression was higher in HIns compared with Cons (p < 0.01). Plasma RBP4 concentrations were positively correlated with TG (r = 0.490), hsCRP (r = 0.565), media thickness (r = 0.890), and p-ERK1/2 protein (r = 0.746) (p < 0.05 each). In cultured RASMCs, RBP4 enhanced insulin-induced proliferation of cells and expression of p-ERK1/2 and p-JAK2. Blockade of ERK1/2 signaling pathway inhibited RBP4-induced proliferation of RASMCs, while suppressing JAK2 remains unchanged. These results suggest that plasma RBP4 concentrations were associated with CVD. In addition, RBP4 increases the proliferation of VSMCs induced by hyperinsulinism via activation of MAPK signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.