The performance assessment of any control system plays a key role in industrial control systems. To meet the real-time requirements of modern control systems, a quick and accurate evaluation of the performance of a system is necessary. In this paper, a performance assessment method of a non-Gaussian control system based on mixture correntropy is proposed for non-Gaussian stochastic systems. Mixture correntropy can solve the problem of minimum entropy translation invariance. When the expected output of a system is unavailable, mixture correntropy combined with the estimation of distribution algorithm (EDA) is used for system identification and noise distribution estimation so as to calculate the benchmark of entropy-based performance assessment. When the expected output of a system is available, the mixture correntropy is directly used as the index to evaluate the performance of the system. To improve the real-time aspect of the performance assessment, an improved EDA is presented to obtain the evaluation index more quickly. For both Gaussian and non-Gaussian systems, the mixture correntropy and the improved identification algorithm are used for system performance assessment, and the results are compared with the minimum entropy index and the probability density function (PDF) curve coincident area index. The comparisons verify the rationality and effectiveness of the correntropy index and the rapidity of the improved EDA algorithm.
Setting sights on the problem of input-output constraints in most industrial systems, an implicit generalized predictive control algorithm based on an improved particle swarm optimization algorithm (PSO) is presented in this paper. PSO has the advantages of high precision and fast convergence speed in solving constraint problems. In order to effectively avoid the problems of premature and slow operation in the later stage, combined with the idea of the entropy of system (SR), a new weight attenuation strategy and local jump out optimization strategy are introduced into PSO. The velocity update mechanism is cancelled, and the algorithm is adjusted respectively in the iterative process and after falling into local optimization. The improved PSO is used to optimize the performance index in predictive control. The combination of PSO and gradient optimization for rolling-horizon improves the optimization effect of the algorithm. The simulation results show that the system overshoot is reduced by about 7.5% and the settling time is reduced by about 6% compared with the implicit generalized predictive control algorithm based on particle swarm optimization algorithm (PSO-IGPC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.