Skyline computation, aiming at identifying a set of skyline points that are not dominated by any other point, is particularly useful for multi-criteria data analysis and decision making. Traditional skyline computation, however, is inadequate to answer queries that need to analyze not only individual points but also groups of points. To address this gap, we generalize the original skyline definition to the novel group-based skyline (G-Skyline), which represents Pareto optimal groups that are not dominated by other groups. In order to compute G-Skyline groups consisting of k points efficiently, we present a novel structure that represents the points in a directed skyline graph and captures the dominance relationships among the points based on the first k skyline layers. We propose efficient algorithms to compute the first k skyline layers. We then present two heuristic algorithms to efficiently compute the G-Skyline groups: the point-wise algorithm and the unit group-wise algorithm, using various pruning strategies. The experimental results on the real NBA dataset and the synthetic datasets show that G-Skyline is interesting and useful, and our algorithms are efficient and scalable.
Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.
Motivated by the insufficiency of the existing framework that could not process multiple attributes with different sensitivity requirements on modeling real world privacy requirements for data publishing, we present a novel method, rating, for publishing sensitive data. Rating releases AT (Attribute Table) and IDT (ID Table) based on different sensitivity coefficients for different attributes. This approach not only protects privacy for multiple sensitive attributes, but also keeps a large amount of correlations of the microdata. We develop algorithms for computing AT and IDT that obey the privacy requirements for multiple sensitive attributes, and maximize the utility of published data as well. We prove both theoretically and experimentally that our method has better performance than the conventional privacy preserving methods on protecting privacy and maximizing the utility of published data. To quantify the utility of published data, we propose a new measurement named classification measurement.
Differential privacy has recently become a de facto standard for private statistical data release. Many algorithms have been proposed to generate differentially private histograms or synthetic data. However, most of them focus on “one-time” release of a static dataset and do not adequately address the increasing need of releasing series of dynamic datasets in real time. A straightforward application of existing histogram methods on each snapshot of such dynamic datasets will incur high accumulated error due to the composibility of differential privacy and correlations or overlapping users between the snapshots. In this paper, we address the problem of releasing series of dynamic datasets in real time with differential privacy, using a novel adaptive distance-based sampling approach. Our first method, DSFT, uses a fixed distance threshold and releases a differentially private histogram only when the current snapshot is sufficiently different from the previous one, i.e., with a distance greater than a predefined threshold. Our second method, DSAT, further improves DSFT and uses a dynamic threshold adaptively adjusted by a feedback control mechanism to capture the data dynamics. Extensive experiments on real and synthetic datasets demonstrate that our approach achieves better utility than baseline methods and existing state-of-the-art methods.
Abstract. DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.