-A new class of information-theoretic divergence measures based on the Shannon entropy is introduced. Unlike the well-known Kullback divergences, the new measures do not require the condition of absolute continuity to be satisfied by the probability distributions involved. More importantly, their close relationship with the variational distance and the probability of misclassification error are established in terms of bounds. These bounds are crucial in many applications of divergence measures. The new measures are also well characterized by the properties of nonnegativity, finiteness, semiboundedness, and boundedness.Index Terms-Divergence, dissimilarity measure, discrimination information, entropy, probability of error bounds.
Software traceability establishes and leverages associations between diverse development artifacts. Researchers have proposed the use of deep learning trace models to link natural language artifacts, such as requirements and issue descriptions, to source code; however, their effectiveness has been restricted by availability of labeled data and efficiency at runtime. In this study, we propose a novel framework called TVace BERT (T-BERT) to generate trace links between source code and natural language artifacts. To address data sparsity, we leverage a three-step training strategy to enable trace models to transfer knowledge from a closely related Software Engineering challenge, which has a rich dataset, to produce trace links with much higher accuracy than has previously been achieved. We then apply the T-BERT framework to recover links between issues and commits in Open Source Projects. We comparatively evaluated accuracy and efficiency of three BERT architectures. Results show that a Single-BERT architecture generated the most accurate links, while a Siamese-BERT architecture produced comparable results with significantly less execution time. Furthermore, by learning and transferring knowledge, all three models in the framework outperform classical IR trace models. On the three evaluated real-word OSS projects, the best T-BERT stably outperformed the VSM model with average improvements of 60.31% measured using Mean Average Precision (MAP). RNN severely underperformed on these projects due to insufficient training data, while T-BERT overcame this problem by using pretrained language models and transfer learning.
Software traceability establishes associations between diverse software artifacts such as requirements, design, code, and test cases. Due to the non-trivial costs of manually creating and maintaining links, many researchers have proposed automated approaches based on information retrieval techniques. However, many globally distributed software projects produce software artifacts written in two or more languages. The use of intermingled languages reduces the efficacy of automated tracing solutions. In this paper, we first analyze and discuss patterns of intermingled language use across multiple projects, and then evaluate several different tracing algorithms including the Vector Space Model (VSM), Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), and various models that combine mono-and cross-lingual word embeddings with the Generative Vector Space Model (GVSM). Based on an analysis of 14 Chinese-English projects, our results show that best performance is achieved using mono-lingual word embeddings integrated into GVSM with machine translation as a preprocessing step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.