This paper makes an investigation on geometric relationships among nodes of the valuated binary trees, including parallelism, connection and penetration. By defining central lines and distance from a node to a line, some intrinsic connections are discovered to connect nodes between different subtrees. It is proved that a node out of a subtree can penetrate into the subtree along a parallel connection. If the connection starts downward from a node that is a multiple of the subtree’s root, then all the nodes on the connection are multiples of the root. Accordingly composite odd integers on such connections can be easily factorized. The paper proves the new results with detail mathematical reasoning and demonstrates several numerical experiments made with Maple software to factorize rapidly a kind of big odd integers that are of the length from 59 to 99 decimal digits. It is once again shown that the valuated binary tree might be a key to unlock the lock of the integer factorization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.