SUMMARYThe jasmonic acid (JA) pathway plays a central role in plant defense responses against insects. Some phloemfeeding insects also induce the salicylic acid (SA) pathway, thereby suppressing the plant's JA response. These phenomena have been well studied in dicotyledonous plants, but little is known about them in monocotyledons. We cloned a chloroplast-localized type 2 13-lipoxygenase gene of rice, OsHI-LOX, whose transcripts were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis and the rice brown planthopper (BPH) Niaparvata lugens, as well as by mechanical wounding and treatment with JA. Antisense expression of OsHI-LOX (as-lox) reduced SSB-or BPH-induced JA and trypsin protease inhibitor (TrypPI) levels, improved the larval performance of SBB as well as that of the rice leaf folder (LF) Cnaphalocrocis medinalis, and increased the damage caused by SSB and LF larvae. In contrast, BPH, a phloem-feeding herbivore, showed a preference for settling and ovipositing on WT plants, on which they consumed more and survived better than on as-lox plants. The enhanced resistance of as-lox plants to BPH infestation correlated with higher levels of BPH-induced H 2 O 2 and SA, as well as with increased hypersensitive response-like cell death. These results imply that OsHI-LOX is involved in herbivore-induced JA biosynthesis, and plays contrasting roles in controlling rice resistance to chewing and phloem-feeding herbivores. The observation that suppression of JA activity results in increased resistance to an insect indicates that revision of the generalized plant defense models in monocotyledons is required, and may help develop novel strategies to protect rice against insect pests.
Plant-mediated interactions between herbivorous arthropods and pathogens transmitted by herbivores are important determinants of the population dynamics of both types of organisms in the field. The role of plant defence in mediating these types of tripartite interactions have been recognized but rarely examined especially at the physiological and molecular levels. Our previous work shows that a worldwide invasive whitefly can establish mutualism with the begomovirus Tomato yellow leaf curl China virus (TYLCCNV) via crop plants. Here, we show that TYLCCNV and betasatellite co-infection suppresses jasmonic acid defences in the plant. Impairing or enhancing defences mediated by jasmonic acid in the plant enhances or depresses the performance of the whitefly. We further demonstrate that the pathogenicity factor βC1 encoded in the betasatellite is responsible for the initiation of suppression on plant defences and contributes to the realization of the virus-vector mutualism. By integrating ecological, mechanistic and molecular approaches, our study reveals a major mechanism of the plant-mediated mutualism between a virus and its vector. As the test plant is an important economic crop, the results also have substantial implications for developing novel strategies for management of crop viruses and the insect vectors associated with them.
SUMMARYAs important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plantspecific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stå l)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders.
The Asian corn borer (Ostrinia furnacalis Guenée) is a destructive pest of maize (Zea mays L.). Despite large-scale commercial maize production, little is known about the defensive responses of field-grown commercial maize to O. furnacalis herbivory, and how these responses result in direct and indirect defence against this pest. To elucidate the maize transcriptome response to O. furnacalis feeding, leaves of maize hybrid Jingke968 were infested with O. furnacalis for 0, 2, 4, 12 and 24 h. Ostrinia furnacalis feeding elicited stronger and more rapid changes in the defence-related gene expression (i.e. after 2 h), and more differentially expressed genes (DEGs) were up-regulated than down-regulated at all times post-induction (i.e. 2, 4, 12 and 24 h) in the O. furnacalis pre-infested maize plants. KEGG pathway analysis indicated that the DEGs in the O. furnacalis pre-infested maize are involved in benzoxazinoids, phytohormones, volatiles, and other metabolic pathways related to maize resistance to herbivores. In addition, the maize leaves previously infested by O. furnacalis for 24 h showed an obvious inhibition of the subsequent O. furnacalis performance, and maize volatiles induced by O. furnacalis feeding for 24 and 48 h attracted the parasitic wasp, Macrocentrus cingulum Brischke. The increased direct and indirect defences induced by O. furnacalis feeding were correlated with O. furnacalis-induced phytohormones, benzoxazinoids, and volatiles. Together, our findings provide new insights into how commercial maize orchestrates its transcriptome and metabolome to directly and indirectly defend against O. furnacalis at the mid-whorl stage in the field.
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDa4 and OsPLDa5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDa4 and -a5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.