Major leaps forward in understanding rice both in genetics and archaeology have taken place in the past decade or so-with the publication of full draft genomes for indica and japonica rice, on the one hand, and with the spread of systematic flotation and increased recovery of archaeological spikelet bases and other rice remains on early sites in China, India and Southeast Asia. This paper will sketch a framework that coherently integrates the evidence from these burgeoning fields. This framework implies a reticulate framework in the phylogeny of early cultivated rice, with multiple starts of cultivation (two is perhaps not enough) but with the key consolidations of adaptations that must have been spread through hybridisation and therefore long-distance cultural contacts.Archaeobotanical evidence allows us to document the gradual evolutionary process of domestication through rice spikelet bases and grain size change. Separate trends in grain size change can be identified in India and China. The earliest centre of rice domestication was in the Yangtze basin of China, but a largely separate trajectory into rice cultivation can be traced in the Ganges plains of India. Intriguingly, contact-induced hybridisation is indicated for the early development of indica in northern India, ca. 2000 BC. An updated synthesis of the interwoven patterns of the spread of various rice varieties throughout Asia and to Madagascar can be suggested in which rice reached most of its historical range of important cultivation by the Iron Age.
The distribution of wild rice and genetic diversity in domesticated ricesRice is a highly diversified crop, being grown from the equator to over 40°N, from sea-level ca. 2,700 m in parts of the Himalayas and in a wide ecological range of cultivation systems. Although there is much less ecological variation found within its wild progenitor complex (Oryza rufipogon and Oryza nivara), these are nonetheless distributed over a wide geographical range and a spectrum of ecological niches from permanent to seasonal wetlands. As the origins of cultivation must have developed in places where hunter-gatherers were utilising wild populations, the distribution of the wild progenitor, in the past when cultivation began, is a key element in identifying the origins of rice. There are three lines of approach to inferring this without archaeological evidence, including (1) the Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.