A trifunctional photosensitizer was designed to achieve highly selective near-infrared tumor imaging, efficient photodynamic therapy and therapeutic self-monitoring.
BackgroundAcetate, an economical industrial chemical, which is also the precursor of acetyl-CoA, could serve as an alternative substrate for biomanufacturing. This nontraditional substrate can be widely produced from syngas via hydrolysis or pyrolysis of the cellulosic biomass, chemical or microbial catalysis, anaerobic fermentation in treated wastewater, etc. However, the toxicity of acetate to microorganisms has held back its utilization, especially for the eukaryotes that are good hosts for production of complicated pharmaceuticals or chemicals. This study seeks to improve acetate utilization in a widely used yeast host, Komagataella phaffii (previously Pichia pastoris), by metabolic engineering of acetate tolerance, transport, and metabolism.ResultsA kinase-deficient library of K. phaffii was firstly used to screen acetate-resistant kinases. The HRK1 knockout strain was sensitive to acetate and overexpression of this gene improved acetate tolerance and cell growth of the strain. Also, overexpression of HRK1 caused a 55% productivity improvement of acetyl-CoA-dependent 6-methylsalicylic acid (6-MSA). However, activation of Hrk1 on membrane H(+)-ATPase Pma1 seemed not to work in the engineered strain. Acetate transporter gene ScFPS1* was further overexpressed, despite of not improving 6-MSA biosynthesis. To enhance acetate metabolism, acetyl-CoA synthesizing related genes, yeast PpACS1, ScACS1*, and E. coli ackA/pta were overexpressed separately. Introduction of PpACS1 and ScACS1* each increased biosynthesis of 6-MSA by approximately 20% on 20 mM acetate. Finally, co-overexpression of HRK1 and ScACS1* improved 6-MSA productivity by 51% on 20 mM acetate, despite that a low expression level of HRK1 happened when genes were expressed under the same promoter.ConclusionsHRK1 screened by K. phaffii kinase-deficient library played an important role in acetate tolerance and was proved to profit the biosynthesis of acetyl-CoA-derived chemicals. It could be a potential target for metabolic engineering of acetate utilization in other eukaryotic hosts as well. A combined strategy of introducing genes for acetate tolerance and metabolism further improved biosynthesis of acetyl-CoA derived reporter compound in K. phaffii. This makes it a good choice for acetyl-CoA-derived chemicals with acetate as substrate or precursor in K. phaffii, which would also extend the use of this chassis host.Electronic supplementary materialThe online version of this article (10.1186/s13068-019-1404-0) contains supplementary material, which is available to authorized users.
Real-time in situ imaging of organelles is increasingly important in modern biomedical analysis and diseases diagnosis. To realize this goal, organelle-targeting nanoparticles as one of the most commonly used technologies in subcellular sensing and imaging has attracted a lot of interest. The biocompatibility, specificity, and binding efficiency are especially critical for efficient organelle-targeting bioimaging. Gold nanoparticles (AuNPs) fabricated with bifunctional peptides constructed with both Aubinding affinity and nucleus-targeting ability were designed and examined for efficient nucleus-targeting bioimaging. Such a design is expected to achieve an oriented assembling of peptides by the medium of the Au-binding peptides specifically assembled on the surface of AuNPs, with the nucleus-targeting end open for accessibility. The bifunctional peptides showed strong binding affinity toward AuNPs and led to a binding capability ∼1.5 times higher than that of the bare nucleus-targeting peptides, ensuring good surface coverage of the nanoparticles for enhanced nucleustargeting ability. Such fabricated AuNPs demonstrated over 90% cell viability after incubation for 24 h with HepG2 cells, which were highly biocompatible. Precise and efficient bioimaging of the nucleus was achieved for HepG2 cells by using the fabricated AuNPs as observed with a confocal laser scanning microscope, a dark-field/fluorescence microscope, and a transmission electron microscope. The high surface coverage and oriented binding pattern appeared to be a promising strategy for construction of organelle-targeting agencies.
In this paper, a novel near-infrared (NIR) colorimetric and turn-on fluorescent pH probe (denoted as Probe 1) has been designed and synthesized based on piperidine-substituted aza-BODIPY, and its ability for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.