Influenza activity is subject to environmental factors. Accurate forecasting of influenza epidemics would permit timely and effective implementation of public health interventions, but it remains challenging. In this study, we aimed to develop random forest (RF) regression models including meterological factors to predict seasonal influenza activity in Jiangsu provine, China. Coefficient of determination (R2) and mean absolute percentage error (MAPE) were employed to evaluate the models' performance. Three RF models with optimum parameters were constructed to predict influenza like illness (ILI) activity, influenza A and B (Flu-A and Flu-B) positive rates in Jiangsu. The models for Flu-B and ILI presented excellent performance with MAPEs <10%. The predicted values of the Flu-A model also matched the real trend very well, although its MAPE reached to 19.49% in the test set. The lagged dependent variables were vital predictors in each model. Seasonality was more pronounced in the models for ILI and Flu-A. The modification effects of the meteorological factors and their lagged terms on the prediction accuracy differed across the three models, while temperature always played an important role. Notably, atmospheric pressure made a major contribution to ILI and Flu-B forecasting. In brief, RF models performed well in influenza activity prediction. Impacts of meteorological factors on the predictive models for influenza activity are type-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.