Combined with the YOLOv3 algorithm, the Darknet network developed on the Internet of Things offers boat maintenance, design, and deployment to meet the needs of developing and implementing the Internet of Things-based ship management. System maintenance was completed, solving the problem of care and identifying the vessels in the water important for care. Based on this, the YOLOv3 algorithm has been reported to achieve the target thinking based on the global data map, and the target area thinking and the distribution plan need to be set into a standard neural network. Add a penalty for fixing the boat to different parts of the system together. Binarily divide the needs by a set of logistic regression, allowing rapid tracking and identification of goals in high-risk situations. Experimental results show that the average validation rate of this study’ standard is 89.5% at 30 frames per second. Compared with traditional and in-depth training, this data algorithm is not only more practical and accurate but also more efficient in learning algorithms and various environments. The switches are more flexible and can control multiple ships and their essentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.