The phase generated carrier (PGC) demodulation technique for phase-sensitive optical time-domain reflectometry (Ф-OTDR) has significant potential in applications involving distributed optical fiber sensing and imaging. An improved PGC demodulation algorithm for a Ф-OTDR combined with an unbalanced Michelson interferometer system is presented in this letter. This modified PGC technique uses the one output signal as a fundamental carrier frequency signal with mathematical transformations, and another output is the modulated signal, which enable the two signals to be output synchronously from the interferometer. Theoretical simulations and experiments demonstrate that the linear and nonlinear distortion caused by phase modulation depth and carrier phase delay are well suppressed by the proposed algorithm with high stability and low distortion. The signal-to-noise-and-distortion ratio of sensors using the proposed method in the same conditions achieve gains of 12.98 dB, 30.82 dB and 6.93 dB over PGC-Arctan, PGC-differential-and-cross-multiplying and PGC-single-path differential division method, respectively. Experimental verification shows that the proposed demodulation system can exactly recover the original signals of multiple vibration positions simultaneously, and the system employing the ameliorated PGC demodulation algorithm has the noise level of about 1.83 × 10−4 rad (√Hz)−1 and a large dynamic range of 65.72 dB @ 800 Hz, which provides a new choice for distributed optical fiber sensing technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.