This paper addresses the identification of finite impulse response (FIR) systems with both quantized and event-triggered observations. An event-triggered communication scheme for the binary-valued output quantization is introduced to save communication resources. Combining the empirical-measure-based identification technique and the weighted least-squares optimization, an algorithm is proposed to estimate the unknown parameter by full use of the received data and the not-triggered condition. Under quantized inputs, it is shown that the estimate can strongly converge to the real values and the estimator is asymptotically efficient in terms of the Cramér-Rao lower bound. Further, the limit of the average communication rate is derived and the tradeoff between this limit and the estimation performance is discussed. Moreover, the case of multi-threshold quantized observations is considered. Numerical examples are included to illustrate the obtained main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.