The high intensity focused ultrasound (HIFU) and thermosensitive cerasomes (HTSCs) were successfully assembled by employing cerasome-forming lipid (CFL) in combination with the component lipids of conventional low temperature sensitive liposomes (LTSLs) including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000) and 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC). The HTSCs showed spherical shape with a mean diameter around 200 nm, exhibiting good biocompatibility. Both hydrophilic and lipophilic drugs can be efficiently encapsulated into HTSCs. In addition, the release rate of HTSCs could be conveniently adjusted by varying the molar ratios of CFL to DPPC. The drug loaded HTSCs showed much longer blood circulation time (half-life >8.50 ± 1.49 h) than conventional LTSLs (0.92 ± 0.17 h). An in vitro study demonstrated that the drug loaded HTSCs are highly stable at 37 °C and show a burst release at 42 °C, providing a capability to act synergistically against tumors. We found that the HTSCs with a proportion of 43.25% of CFL could release more than 90% hydrophilic drugs in 1 min at an elevated temperature of 42 °C generated by HIFU exposure. After intravenous injection of doxorubicin (DOX) loaded HTSCs at 5 mg DOX/kg, followed by double HIFU sonication, the tumor growth of the adenocarcinoma (MDA-MB-231) bearing mice could be significantly inhibited. Therefore, the drug loaded HTSCs combined with HIFU hold great potential for efficient local chemotherapy of cancer due to the ability to deliver high concentration of chemotherapy drugs directly to the tumor, achieve maximum therapeutic efficacy and minimal side effects, and avoid the damage to the healthy tissues caused by systemic administration of drugs.
BackgroundPersons with diabetes are at high risk of developing diabetic kidney disease (DKD), which is associated with high morbidity and mortality. Current drug therapies for DKD, such as angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), are not entirely satisfactory. This study aimed to evaluate the additional benefit and safety of the Chinese herbal granule Tangshen Formula (TSF) in treating DKD.MethodsThe study was designed as a six-center randomized, double-blind, placebo-controlled trial. From April 2007 through December 2009, 180 patients with DKD were enrolled. In addition to conventional treatment with ACEIs or ARBs, 122 participants were randomly assigned to receive TSF and 58 participants to receive placebo for 24 weeks. Primary outcome was urinary protein level, measured by urinary albumin excretion rate (UAER) for participants with microalbuminuria, 24-hour urinary protein (24h UP) for participants with macroalbuminuria. Secondary outcomes included renal function, serum lipids, quality of life, symptoms, and adverse events.FindingsAfter 24 weeks of treatment, no statistically significant difference in UAER (TSF −19.53 μg/min compared with placebo −7.01 μg/min, with a mean difference of −12.52 μg/min; 95%CI, −68.67 to 43.63, P = 0.696) was found between TSF and placebo groups. However, TSF displayed a statistically significant decrease in 24h UP (TSF−0.21 g compared with placebo 0.36 g, with a mean difference of −0.57g; 95%CI, −1.05 to −0.09, P = 0.024). Estimated glomerular filtration rate (eGFR) was improved in both patients with microalbuminuria and macroalbuminuria, with a mean difference of 15.51 ml/min/1.73 m2 (95%CI, 3.71 to 27.31), 9.01 ml/min/1.73 m2 (95%CI, −0.10 to 18.13), respectively. Other secondary outcomes showed no statistically significant difference between groups or in the incidence of adverse events.ConclusionsBased on conventional treatments, TSF appears to provide additional benefits compared with placebo in decreasing proteinuria and improving eGFR in DKD patients with macroalbuminuria. Nevertheless, further study is needed to evaluate TSF treating patients with microalbuminuria.Trial RegistrationChinese Clinical Trial Registry ChiCTR-TRC-10000843
We prospectively investigated the feasibility of using quantitative ultrasound imaging (QUI) to assess the biceps brachii muscle (BBM) in individuals with chronic post-stroke spasticity. To quantify muscle echogenicity and stiffness, we measured QUI parameters (gray-scale pixel value and shear wave velocity [SWV, m/s]) of the BBM in three groups: 16 healthy BBMs; 12 post-stroke, non-spastic BBMs; and 12 post-stroke, spastic BBMs. The QUI results were compared with the Modified Ashworth Scale and Tardieu Scale. A total of 20 SWVs were measured in each BBM, once at elbow in 90° flexion and again at maximally achievable extension using acoustic radiation force impulse imaging. BBM pixel value was measured in gray-scale images captured at 90° elbow flexion using ImageJ software. Statistical analyses included analysis of variance for examining the difference in SWV and pixel values among the three groups; Bonferroni correction for testing the difference in SWV and pixel values in a paired group; t-test for examining the difference in SWV values measured at two elbow angles; and Pearson correlation coefficient for analyzing the correlation of QUI to Modified Ashworth Scale and Tardieu Scale. SWV significantly differed between spastic BBMs and non-spastic or healthy BBMs. For pixel values, each of the three groups significantly differed from the others at elbow 90° flexion. The difference in SWV measured between the two elbow angles was also significant (p <0.01). A strong negative correlation was found between SWV and passive range of motion (R = -0.88, p <0.0001) in spastic upper limbs. These results suggest that the use of QUI is feasible in quantitative assessment of spastic BBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.