Aiming at addressing the problem caused by multipath effects in direction of arrival (DOA) estimation for underwater targets, a method based on the active detection on virtual time reversal (ADVTR) Capon algorithm is proposed. Unlike the conventional passive target estimation method ignoring the multipath effects but only considering the direct wave, the proposed method is closer to the actual situation in that the multipath signal propagation model is fully taken into account; in addition, active detection (AD) and virtual time reversal (VTR) processes are added, which use active detection to estimate channels, and virtual time reversal to realize focusing in a computer after the source-receive array (SRA) receives the reflected signal of the target. The combination of the two methods can greatly improve the energy of SRA and the precision of target direction estimation. With the popular acoustic field simulation tool Bellhop, the model proposed in this paper is verified. Compared with the conventional Capon method without time reversal, the simulation results show that the ADVTR Capon estimation method is far better, in terms of resolution and suppressing the sidelobes. It is suitable for the target DOA estimation under low signal-to-noise ratio (SNR) conditions. Further, we also show the ADVTR Capon estimation method works well in a real tank experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.