Understanding and improving public flood risk perception is conducive to the implementation of effective flood risk management and disaster reduction policies. In the flood-prone city of Jingdezhen, flood disaster is one of the most destructive natural hazards to impact the society and economy. However, few studies have been attempted to focus on public flood risk perception in the small and medium-size city in China, like Jingdezhen. Therefore, the purpose of this study was to investigate the public flood risk perception in four districts of Jingdezhen and examine the related influencing factors. A questionnaire survey of 719 randomly sampled respondents was conducted in 16 subdistricts of Jingdezhen. Analysis of variance was conducted to identify the correlations between the impact factors and public flood risk perception. Then, the flood risk perception differences between different groups under the same impact factor were compared. The results indicated that the socio-demographic characteristics of the respondents (except occupation), flood experience, flood knowledge education, flood protection responsibility, and trust in government were strongly correlated with flood risk perception. The findings will help decision makers to develop effective flood risk communication strategies and flood risk reduction policies.
An oceanic frontal zone is a confluent region of warm and cool ocean currents, characterized by a strong meridional gradient of sea surface temperature (SST). High-resolution SST observations show that the wintertime North Pacific exhibits a unique double-oceanic-front structure, with a subtropical frontal zone (STFZ) and a subarctic frontal zone (SAFZ), whose impacts on the weather and climate over the East Asia–North Pacific–North American region need further investigation. In this study, we conduct groups of multiyear and ensemble simulations using a WRF high-resolution regional climate model, through which the different impacts of the STFZ and SAFZ on the wintertime atmospheric circulations are identified and compared. Our multiyear simulations show that the STFZ, although with weaker intensity, exerts evident and consistent impacts on the storm track and westerly jet in the North Pacific by enhancing and elongating the eddy activity, zonal wind, and Aleutian low. The SAFZ exhibits coherent impacts on the low-level atmospheric baroclinicity and storm track; however, its impacts on the upper-level storm track and atmospheric circulations are divergent, exhibiting strong year-by-year difference. Our study suggests that the SAFZ’s impacts on the atmospheric circulations strongly depend on the background mean state, which contributes to the divergent impacts of the SAFZ. Furthermore, our results highlight the role of diabatic heating for the above different impacts of the STFZ and SAFZ on the atmosphere. We argue that the much deeper diabatic heating induced by the STFZ, via affecting the baroclinicity through the whole troposphere, can exert consistent influence on eddy activities and atmospheric circulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.