The X‐ray crystal structures of the polyfluorinated complexes [5,5′‐bis(HCF2CF2CF2CF2CH2OCH2)‐2,2′‐bpy]MI2 (55‐8F‐PtI2 and 55‐8F‐PdI2 where M = Pt and Pd, respectively) were obtained. These two structures are found to show not only two different types of intramolecular, six‐membered cyclic C–H···F–C interactions (F2C–H···F–C and HC–H···F–C) as important structural features but also alternating fluorinated and non‐fluorinated layers. The F2C–H···F–C interactions, which are close to the metal core, are much better structurally characterized in this type of complexes with fluorous ponytails at the 5,5′ positions than those previously reported at the 4,4′ positions. The molecular planes of (bpy)MI2 are extended by self‐matching, using two C–H···I hydrogen bonds and one C–H···F–C blue‐shifting hydrogen bond. The F2C–H···F–C hydrogen bonds interact at the supramolecular level such that one polyfluorinated ponytail of the title compounds is transoid without an intramolecular C–H···F–C interaction, while the other polyfluorinated ponytail is cisoid with an intramolecular C–H···F–C interaction. Why one ponytail is cisoidal while the other is transoidal will be explained. Furthermore, the second type of C–H···F–C interactions involving the methylene H atom has been identified for the first time. In addition, these two metal structures are studied by density functional theory (DFT).
Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu’s group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, β-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80–100 °C in 1–4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.