<abstract><p>Bacterial resistance poses a major hazard to human health, and is caused by the misuse and overuse of antibiotics. Thus, it is imperative to investigate the optimal dosing strategy to improve the treatment effect. In this study, a mathematical model of antibiotic-induced resistance is presented to improve the antibiotic effectiveness. First, conditions for the global asymptotical stability of the equilibrium without pulsed effect are given according to the Poincaré-Bendixson Theorem. Second, a mathematical model of the dosing strategy with impulsive state feedback control is also formulated to reduce drug resistance to an acceptable level. The existence and stability of the order-1 periodic solution of the system are discussed to obtain the optimal control of antibiotics. Finally, our conclusions are confirmed by means of numerical simulations.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.