The ejector performance varies with the mixing chamber length which is largely dependent on the fluid liquid volume fraction at the inlet. In this study, numerical simulations are conducted to optimize two mixing chamber lengths of a two-phase ejector under varied liquid volume fractions of 0–0.1 in two inlet fluids. The main findings are as follows: (1) The two optimal lengths of constant-pressure and constant-area mixing chambers are identified within 23–44 mm and 15–18 mm, respectively, when the primary inlet fluid is in two-phase; (2) the two optimal lengths are 2–5 mm and 9–15 mm, respectively, when the secondary inlet fluid is in two-phase; (3) when both inlets are in two-phase, the two optimal lengths are ranged in 5–23 mm and 6–18 mm; (4) little liquid within inlet fluid has a significant influence on ejector performances; and (5) optimal constant-pressure mixing chamber length and the sum of the two optimal lengths increase with the primary flow inlet liquid volume fraction but decrease with that of the secondary flow inlet.
In this paper, by using three-dimensional numerical simulations, the optimization of the cross-sectional area and angle of the secondary flow inlet is first conducted. Then, to further improve the ejector performance, an auxiliary entrainment is proposed and the optimization of the relative position, cross-sectional area and angle of the auxiliary entrainment inlet is accordingly performed by using three-dimensional methods. The results show that: (1) the performance of the ejector with the secondary flow in a vertical direction to the primary flow is slightly better than that in a parallel direction to the primary flow; (2) the effect of the cross-sectional area of the secondary flow has a relatively evident influence on ER, but its effect becomes ignored when the inlet area increases to a certain value; (3) the relative position and axial width of the auxiliary entrainment inlet are important factors influencing ejector performance, and after the optimization of these two geometries, the ejector ER can be increased by 97.7%; and (4) the optimization of the auxiliary entrainment inlet has a substantial effect on the ejector performance as compared to that of the secondary flow inlet. The novelty of this study is that the effect of an auxiliary entrainment on the ejector’s performance is identified by using a three-dimensional numerical simulation for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.