Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ∼5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
Hexagonal boron nitride is a two-dimensional layered material that can be stable at 1,500°C in air and will not react with most chemicals. Here we demonstrate large-scale, ultrathin, oxidation-resistant coatings of high-quality hexagonal boron nitride layers with controlled thicknesses from double layers to bulk. We show that such ultrathin hexagonal boron nitride films are impervious to oxygen diffusion even at high temperatures and can serve as highperformance oxidation-resistant coatings for nickel up to 1,100°C in oxidizing atmospheres. Furthermore, graphene layers coated with a few hexagonal boron nitride layers are also protected at similarly high temperatures. These hexagonal boron nitride atomic layer coatings, which can be synthesized via scalable chemical vapour deposition method down to only two layers, could be the thinnest coating ever shown to withstand such extreme environments and find applications as chemically stable high-temperature coatings.
There has been much discussion on the need to develop fluorescent quantum dots (QDs) as ultracompact probes, with overall size profiles comparable to those of the genetically encoded fluorescent tags. In the use of conventional semiconductor QDs for such a purpose, the beautifully displayed dependence of fluorescence color on the particle diameter becomes a limitation. More recently, carbon dots have emerged as a new platform of QD-like fluorescent nanomaterials. The optical absorption and fluorescence emissions in carbon dots are not bandgap in origin, different from those in conventional semiconductor QDs. The absence of any theoretically defined fluorescence color-dot size relationships in carbon dots may actually be exploited as a unique advantage in the size reduction toward having carbon dots serve as ultracompact QD-like fluorescence probes. Here we report on carbon dots of less than 5 nm in the overall dot diameter with the use of 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) molecules for the carbon particle surface passivation. The EDA-carbon dots were found to be brightly fluorescent, especially over the spectral range of green fluorescent protein. These aqueous soluble smaller carbon dots also enabled more quantitative characterizations, including the use of solution-phase NMR techniques, and the results suggested that the dot structures were relatively simple and better-defined. The potential for these smaller carbon dots to serve as fluorescence probes of overall sizes comparable to those of fluorescent proteins is discussed.
While the structures of self-assembled monolayers (SAMs) of alkanethiols on Au(111) are extensively studied and well-known, new structures and complex phase behavior have been progressively discovered when coverage of these layers falls below saturation. Structures and phase transitions of annealed decanethiol monolayers on Au(111) surfaces were systematically investigated using scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Rich structures were revealed as a result of annealing in UHV. At temperatures below 345 K, no significant changes in coverage were observed, although the size of two-dimensional crystalline c(4√3 × 2√3)R30° domains increases as annealing progresses. A two-dimensional melting occurs at 345 ± 5 K and was captured in situ from time-dependent STM studies. Above 400 K, significant desorption takes place. In the temperature range of 345−400 K, within which desorption progresses to gradually decrease the surface coverage, a variety of striped phases have been observed, each having distinct molecular-level packing and unit cells. Well-known striped phases have been confirmed: (p × √3), with p values (integer or half-integer multiples of the Au(111) periodicity) of 7.5, 9, and 11. In addition, new structures such as mixed striped phases and mesh-like structures are revealed, which are often found to coexist with the regions of pure striped phases. The systematic investigations of the structural and phase evolution shed light on the SAM desorption process at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.