Dynamic reconstruction of metal sulphides during electrocatalytic oxygen evolution reaction (OER) has hampered the acquisition of legible evidence for comprehensively understanding the phase-transition mechanism and electrocatalytic activity origin. Herein, modelling on a series of cobalt-nickel bimetallic sulphides, we for the first time establish an explicit and comprehensive picture of their dynamic phase evaluation pathway at the pre-catalytic stage before OER process. By utilizing the in-situ electrochemical transmission electron microscopy and electron energy loss spectroscopy, the lattice sulphur atoms of (NiCo)S1.33 particles are revealed to be partially substituted by oxygen from electrolyte to form a lattice oxygen-sulphur coexisting shell surface before the generation of reconstituted active species. Such S-O exchange process is benefitted from the subtle modulation of metal-sulphur coordination form caused by the specific Ni and Co occupation. This unique oxygen-substitution behaviour produces an (NiCo)OxS1.33-x surface to reduce the energy barrier of surface reconstruction for converting sulphides into active oxy/hydroxide derivative, therefore significantly increasing the proportion of lattice oxygen-mediated mechanism compared to the pure sulphide surface. We anticipate this direct observation can provide an explicit picture of catalysts’ structural and compositional evolution during the electrocatalytic process.
Nanostructured metal-nitrides have attracted tremendous interest as a new generation of catalysts for electroreduction of CO2, but these structures have limited activity and stability in the reduction condition. Herein, we report a method of fabricating FeN/Fe3N nanoparticles with FeN/Fe3N interface exposed on the NP surface for efficient electrochemical CO2 reduction reaction (CO2RR). The FeN/Fe3N interface is populated with Fe−N4 and Fe−N2 coordination sites respectively that show the desired catalysis synergy to enhance the reduction of CO2 to CO. The CO Faraday efficiency reaches 98% at −0.4 V vs. reversible hydrogen electrode, and the FE stays stable from −0.4 to −0.9 V during the 100 h electrolysis time period. This FeN/Fe3N synergy arises from electron transfer from Fe3N to FeN and the preferred CO2 adsorption and reduction to *COOH on FeN. Our study demonstrates a reliable interface control strategy to improve catalytic efficiency of the Fe–N structure for CO2RR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.