Non‐alcoholic fatty liver disease (NAFLD) is a public health challenge and an increasing cause of chronic liver disease worldwide. However, the underlying molecular mechanism remains unclear. The aim of this study was to determine the precise role of serpina3c in the process of NAFLD. Male Apoe−/−/serpina3c−/− double knockout (DKO) and Apoe−/− mice were fed a high‐fat diet (HFD) for 12 weeks. Several markers of steatosis and inflammation were evaluated. In vitro cell models induced by palmitic acid (PA) treatment were used to evaluate the beneficial effect of serpina3c on necroptosis and the underlying molecular mechanism. Compared with Apoe−/− mice, DKO mice exhibited a significantly exacerbated hepatic steatosis, increased hepatic triglyceride content and expression of genes involved in lipid metabolism (SREBP1c and SCD1), promoted hepatic inflammation and fibrosis, promoted necroptosis by increasing expression of receptor‐interacting protein 3 (RIP3), phosphorylated mixed lineage kinase domain‐like (MLKL) and high mobility group box 1 (HMGB1). Notably, serpina3c deficiency increased β‐catenin, Foxo1, and Toll‐like receptor 4 (TLR4) protein expression. In vitro , serpina3c knockdown promoted necroptosis and lipid droplet formation under condition of lipotoxicity. However, these phenomena were reversed by the overexpression of serpina3c. Mechanistically, downregulation of serpina3c expression promoted Foxo1 and β‐catenin colocalized in the nucleus under condition of lipotoxicity, consequently upregulating the expression of TLR4. Conversely, disruption of Foxo1‐β/catenin by Foxo1 and β‐catenin inhibitors decreased TLR4 expression and ameliorated hepatic necroptosis in vitro. This study highlights a novel mechanism that serpina3c modulates NAFLD development by inhibiting necroptosis via β‐catenin/Foxo1/TLR4.
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that play an essential role in innate immunity across taxa from invertebrates to vertebrates. The evolution system of AMP system has not been well explained in the literature. In this study, we cloned and sequenced AMP transcriptomes of three frog species, namely Rana dybowskii, Rana amurensis, and Pelophylax nigromaculatus, which are partially sympatric in northeast Asia, but show different habitat preferences. We found that each species contained 7 to 14 families of AMPs and the diversity was higher in species with a large geographic range and greater habitat variation. All AMPs are phylogenetically related but not associated with the speciation process. Most AMP genes were under negative selection. We propose that the diversification and addition of novel functions and improvement of antimicrobial efficiency are facilitated by the expansion of family members and numbers. We also documented significant negative correlation of net charges and numbers of amino acid residues between the propiece and mature peptide segments. This supports the Net Charge Balance Hypothesis. We propose the Cut Point Sliding Hypothesis as a novel diversification mechanism to explain the correlation in lengths of the two segments.
— Among algorithms in recommendation system, Collaborative Filtering (CF) is a popular one. However, the CF methods can’t guarantee the safety of the user rating data which cause private preserving issue. In general, there are four kinds of methods to solve private preserving: Perturbation, randomization, swapping and encryption. In this paper, we mimic algorithms which attack the privacy-preserving methods with randomized perturbation techniques. After leaking part of rating history of a customer, we can infer this customer’s other rating history. At the end, we propose an algorithm to enhance the system so as to avoid being attacked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.