<p>Traditional machine learning models generally use weak supervision model, which is difficult to adapt to the scene of multi classification for emotional text. Therefore, a multi model ensemble learning algorithm for emotional text classification is proposed. The algorithm takes the labeled emotional text data as the training sample, uses the improved TF-IDF algorithm to train the word vector space model, selects three weakly supervised machine learning algorithms, linear SVC, xgboost and logistic regression, to construct the base classifier, and uses the random forest algorithm to construct the meta classifier. It realizes the function of dividing emotional text into three categories: positive, neutral and negative. From the simulation and test results, the AUC values of the multi model ensemble learning algorithm model for each category are 0.93, 0.94 and 1.00, and the AP values are 0.87, 0.86 and 1.00, and the indicators of accuracy and recall are better than the single machine learning model, which realizes the high performance and high accuracy for emotional text classification.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.