Siloxane-anchored, self-assembled monolayers (SAMs) on single crystal Si were prepared with a variety of surface functional groups using a single commercially available surfactant (1-bromo-11-(trichlorosilyl)undecane) followed by in situ transformations. Polar (thioacetate and thiol), nonpolar (methyl), acidic (sulfonic and carboxylic), basic (various amines), and ionic (alkylammonium) surface functionalities were prepared. For primary amine and sulfonate surfaces, the degree of surface charge as a function of pH was determined ex situ using X-ray photoelectron spectroscopy (XPS). Sulfonate SAMs exhibited much higher effective pKa (approximately 2) than dilute sulfonic acid (-5 to -6), and amine SAMs exhibited much lower pKa (approximately 3) than dilute organic amines (approximately 10). This is attributed to the stabilization of nonionized groups by adjacent ionized groups in the SAM. Zeta potentials of these SAMs as a function of pH were consistent with the XPS results and indicated that ionizable SAM surfaces can generate surface potentials much higher than those of nonionic SAMs (thioacetate, methyl) and typical oxide surfaces.
Defects at the bulk grain boundaries and heterojunction interfaces could dictate the power losses of perovskite solar cells (PSCs) during the operation process, which are regarded as major roadblocks towards...
Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic‐liquid (IL) electrolyte composed of 1‐ethyl‐3‐methylimidazolium (EMIm) cations and high‐concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite‐free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries.
This paper reports the effects of the aspect ratio of zinc oxide (ZnO) nanowires on the performance of ZnO-nanowirebased dye-sensitized solar cells (DSSCs). ZnO nanowire-structured photoanodes can improve the efficiency of the electron collection of DSSCs, but their performances significantly depend on the aspect ratio of component nanowires and their array structures. The aspect ratio of nanowires has been successfully regulated by controlling the supersaturation degree of solutions, that is, simply by changing the molar ratio of Zn(II)/NH 3 . A highly oriented, single crystalline, long ZnO nanowire with a fine aligning structure was obtained with an aspect ratio of about 100-120 (diameter: 120-150 nm, length: 14 µm). The main crystalline phase measured by X-ray diffraction and Raman scattering was proven to be wurtzite-type ZnO, whereas the appearance of another phase was also detected. The films show a transmittance of about 60% in the visible light region and optical band gaps at around 3.2 eV. An overall conversion efficiency of about 1.7% was obtained, which is almost three times of that we reported previously. The present research points out a possible way to improve ZnO-based DSSCs by engineering a nanostructured electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.