Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) is an important egg predator of planthoppers which are destructive rice pests. The chemosensory genes in the mirid antennae play important roles in mating and prey-seeking behaviors. To gain a better understanding of the olfaction of C. lividipennis, we sequenced the antennal transcriptomes of the predator to identify the key olfaction genes. We identified 18 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 1 Niemann-Pick C2 protein (NPC2), 15 odorant receptors (ORs), 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs) and 3 sensory neuron membrane proteins (SNMPs). Quantitative real-time PCR results showed that the relative transcript levels of three ClivORs (ClivOR6, 7 and 14) in the female antennae were 3 to 6 folds higher than that in the male antennae, indicating these genes were more related to oviposition site selection. The relative transcript levels of ClivCSP8 and ClivOR11 were 2.6 and 2.7 times higher in the male antennae than that of the female, respectively, indicating that these genes might be involved in mate searching. Moreover, the responses of dsorco treated predators to volatiles emitted from infested rice were significantly reduced, indicating these volatiles might serve as crucial cues in the host searching of C. lividipennis.
Pheromones are a kind of signal produced by an animal that evoke innate responses in conspecifics. In moth, pheromone components can be detected by specialized olfactory receptor neurons (OSNs) housed in long sensilla trichoids on the male antennae. The pheromone receptors (PRs) located in the dendrite membrane of OSNs are responsible for pheromone sensing in most Lepidopteran insects. The potato tuber moth Phthorimaea operculella is a destructive pest of Solanaceae crops. Although sex attractant is widely used in fields to monitor the population of P. operculella, no study has been reported on the mechanism the male moth of P. operculella uses to recognize sex pheromone components. In the present study, we cloned two pheromone receptor genes PopeOR1 and PopeOR3 in P. operculella. The transcripts of them were highly accumulated in the antennae of male adults. Functional analysis using the heterologous expression system of Xenopus oocyte demonstrated that these two PR proteins both responded to (E, Z)-4,7–13: OAc and (E, Z, Z)-4,7,10–13: OAc, the key sex pheromone components of P. operculella, whilst they responded differentially to these two ligands. Our findings for the first time characterized the function of pheromone receptors in gelechiid moth and could promote the olfactory based pest management of P. operculella in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.