Among infertile women with the polycystic ovary syndrome, frozen-embryo transfer was associated with a higher rate of live birth, a lower risk of the ovarian hyperstimulation syndrome, and a higher risk of preeclampsia after the first transfer than was fresh-embryo transfer. (Funded by the National Basic Research Program of China and others; ClinicalTrials.gov number, NCT01841528.).
BackgroundCancer stem cells (CSCs) are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs.MethodsHuman hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs.ResultsThe PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44). Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans) -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability.ConclusionsNonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.
BackgroundRecent studies indicated that some glycolytic enzymes are complicated, multifaceted proteins rather than simple components of the glycolytic pathway. FBP1 plays a vital role in glucose metabolism, but its role in gastric cancer tumorigenesis and metastasis has not been fully understood.MethodsThe prognostic value of FBP1 was first studied in The Cancer Genome Atlas (TCGA) database and validated in in-house database. The effect of FBP1 on cell proliferation and metastasis was examined in vitro. Nonparametric test and Log-rank test were used to evaluate the clinical significance of FBP1 expression.ResultsIn the TCGA cohort, FBP1 mRNA level were shown to be predictive of overall survival in gastric cancer (P = 0.029). In the validation cohort, FBP1 expression were inversely correlated with advanced N stage (P = 0.021) and lymphovascular invasion (P = 0.011). Multivariate Cox regression analysis demonstrated that FBP1 was an independent predictor for both overall survival (P = 0.004) and disease free survival (P<0.001). Functional studies demonstrated that ectopic FBP1 expression inhibited proliferation and invasion in gastric cancer cells, while silencing FBP1 expression had opposite effects (P<0.05). Mechanically, FBP1 serves as a tumor suppressor by inhibiting epithelial-mesenchymal transition (EMT).ConclusionsDownregulation of FBP1 promotes gastric cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in gastric cancer.
Stem cells are considered the fundamental underpinnings of tissue biology. The stem cell microenvironment provides factors and elements that play significant roles in controlling the cell fate direction. The bone marrow is an important environment for functional hematopoietic stem cells in adults. Remarkable progress has been achieved in the area of hematopoietic stem cell fate modulation based on the recognition of biochemical factors provided by bone marrow niches. In this review, we focus on emerging evidence that hematopoietic stem cell fate is altered in response to a variety of microenvironmental physical cues, such as geometric properties, matrix stiffness, and mechanical forces. Based on knowledge of these biophysical cues, recent developments in harnessing hematopoietic stem cell niches ex vivo are also discussed. A comprehensive understanding of cell microenvironments helps provide mechanistic insights into pathophysiological mechanisms and underlies biomaterial-based hematopoietic stem cell engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.