Inflammasomes are multi-protein complexes that trigger the activation of caspase-1 and the maturation of interleukin-1β (IL-1β), yet the regulation of these complexes remains poorly characterized. Here we show that nitric oxide (NO) inhibited the NLRP3-mediated ASC pyroptosome formation, caspase-1 activation and IL-1β secretion in myeloid cells from both mice and humans. Meanwhile, endogenous NO derived from iNOS (inducible form of NO synthase) also negatively regulated NLRP3 inflammasome activation. Depletion of iNOS resulted in increased accumulation of dysfunctional mitochondria in response to LPS and ATP, which was responsible for the increased IL-1β production and caspase-1 activation. iNOS deficiency or pharmacological inhibition of NO production enhanced NLRP3-dependent cytokine production in vivo, thus increasing mortality from LPS-induced sepsis in mice, which was prevented by NLRP3 deficiency. Our results thus identify NO as a critical negative regulator of the NLRP3 inflammasome via the stabilization of mitochondria. This study has important implications for the design of new strategies to control NLRP3-related diseases.
Epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib have been widely used in patients with non-small-cell lung cancer. Unfortunately, the efficacy of EGFR-TKIs is limited because of natural and acquired resistance. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether autophagy can be activated by gefitinib or erlotinib and thereby impair the sensitivity of targeted therapy to lung cancer cells remains unknown. Here, we first report that gefitinib or erlotinib can induce a high level of autophagy, which was accompanied by the inhibition of the PI3K/Akt/mTOR signaling pathway. Moreover, cytotoxicity induced by gefitinib or erlotinib was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting ATG5 and ATG7, the most important components for the formation of autophagosome. Interestingly, EGFR-TKIs can still induce cell autophagy even after EGFR expression was reduced by EGFR specific siRNAs. In conclusion, we found that autophagy can be activated by EGFR-TKIs in lung cancer cells and inhibition of autophagy augmented the growth inhibitory effect of EGFR-TKIs. Autophagy inhibition thus represents a promising approach to improve the efficacy of EGFR-TKIs in the treatment of patients with advanced non-small-cell lung cancer.
BackgroundPost-infarction cardiovascular remodeling and heart failure are the leading cause of myocardial infarction (MI)-driven death during the past decades. Experimental observations have involved intestinal microbiota in the susceptibility to MI in mice; however, in humans, identifying whether translocation of gut bacteria to systemic circulation contributes to cardiovascular events post-MI remains a major challenge.ResultsHere, we carried out a metagenomic analysis to characterize the systemic bacteria in a cohort of 49 healthy control individuals, 50 stable coronary heart disease (CHD) subjects, and 100 ST-segment elevation myocardial infarction (STEMI) patients. We report for the first time higher microbial richness and diversity in the systemic microbiome of STEMI patients. More than 12% of post-STEMI blood bacteria were dominated by intestinal microbiota (Lactobacillus, Bacteroides, and Streptococcus). The significantly increased product of gut bacterial translocation (LPS and d-lactate) was correlated with systemic inflammation and predicted adverse cardiovascular events. Following experimental MI, compromised left ventricle (LV) function and intestinal hypoperfusion drove gut permeability elevation through tight junction protein suppression and intestinal mucosal injury. Upon abrogation of gut bacterial translocation by antibiotic treatment, both systemic inflammation and cardiomyocyte injury in MI mice were alleviated.ConclusionsOur results provide the first evidence that cardiovascular outcomes post-MI are driven by intestinal microbiota translocation into systemic circulation. New therapeutic strategies targeting to protect the gut barrier and eliminate gut bacteria translocation may reduce or even prevent cardiovascular events post-MI.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0441-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.