Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.
The dye – sensitized solar cell (DSSC) is an attractive and promising device for solar cell applications that have been intensively investigated worldwide. DSSC consists of a namo TiO2 film of the photo electrode, dye molecules absorbed on the surface of TiO2 film, an electrolyte layer and a Pt counter electrode. Among these, the nanoporous TiO2 film plays an important role because it can adsorb a large amount of dye molecules which provide electrons. Therefore, the TiO2 film affects the cell performance. In this paper, the characteristics of DSSCs with different TiO2 film thicknesses were studied by using electrochemical impedance spectroscopy(EIS). The impedance component attributed to TiO2|electrolyte interface indicated that the small semicircle and low characteristic frequency was essential for high performance DSSC. An optimum overall conversion efficiency( %) of 5.54% was obtained in the DSSC assembled with the TiO2 film thickness of 8.86μm.
Circuit optimization method should include the topology of automatic design circuit and automatically determine components parameters of the circuit. At present, CAD or EDA optimization tools is produced by combined optimization algorithm and the basic analysis above together with the tolerance analysis. In this paper, optimization design which can modular basic analog circuit by using Optimizer, which makes the circuit topology structure and component parameters tend to be more reasonable, provides the basis for teaching practice and scientific research. It has practical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.