Summary
Although spiral waves are ubiquitous features of nature, and have been observed in many biological systems, their existence and potential function in mammalian cerebral cortex remains uncertain. Using voltage-sensitive dye imaging, we found that spiral waves occur frequently in the neocortex in vivo, both during pharmacologically induced oscillations and during sleep-like states. While their lifespan is limited, spiral waves can modify ongoing cortical activity by influencing oscillation frequencies and spatial coherence, and by reducing amplitude in the area surrounding the spiral phase singularity. During sleep-like states, the rate of occurrence of spiral waves varies greatly depending on brain states. These results support the hypothesis that spiral waves, as an emergent activity pattern, can organize and modulate cortical population activity on the mesoscopic scale and may contribute to both normal cortical processing and to pathological patterns of activity such as those found in epilepsy.
In China, ages at menarche and menopause are not associated with diabetes. Later menarche and menopause are associated with decreasing CVD risk and earlier menopause with higher osteoporosis risk. Menarche and menopause history may help identify women with increased risk of developing CVD and osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.