As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Lymphatic vessels are highly responsive to changes in the interstitial environment. Previously, we showed renal lymphatics express the Na-K-2Cl cotransporter. Since interstitial sodium retention is a hallmark of proteinuric injury, we examined whether renal sodium affects NKCC1 expression and the dynamic pumping function of renal lymphatic vessels. Puromycin aminonucleoside (PAN)-injected rats served as a model of proteinuric kidney injury. Sodium 23Na/1H-MRI was used to measure renal sodium and water content in live animals. Renal lymph, which reflects the interstitial composition, was collected, and the sodium analyzed. The contractile dynamics of isolated renal lymphatic vessels were studied in a perfusion chamber. Cultured lymphatic endothelial cells (LECs) were used to assess direct sodium effects on NKCC1. MRI showed elevation in renal sodium and water in PAN. In addition, renal lymph contained higher sodium, although the plasma sodium showed no difference between PAN and controls. High sodium decreased contractility of renal collecting lymphatic vessels. In LECs, high sodium reduced phosphorylated NKCC1 and SPAK, an upstream activating kinase of NKCC1, and eNOS, a downstream effector of lymphatic contractility. The NKCC1 inhibitor furosemide showed a weaker effect on ejection fraction in isolated renal lymphatics of PAN vs controls. High sodium within the renal interstitium following proteinuric injury is associated with impaired renal lymphatic pumping that may, in part, involve the SPAK-NKCC1-eNOS pathway, which may contribute to sodium retention and reduce lymphatic responsiveness to furosemide. We propose that this lymphatic vessel dysfunction is a novel mechanism of impaired interstitial clearance and edema in proteinuric kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.