Next Point-of-Interest (POI) recommendation has become an indispensable functionality in Location-based Social Networks (LBSNs) due to its effectiveness in helping people decide the next POI to visit. However, accurate recommendation requires a vast amount of historical check-in data, thus threatening user privacy as the location-sensitive data needs to be handled by cloud servers. Although there have been several on-device frameworks for privacy-preserving POI recommendations, they are still resource-intensive when it comes to storage and computation, and show limited robustness to the high sparsity of user-POI interactions. On this basis, we propose a novel d ecentralized c ollaborative l earning framework for POI r ecommendation (DCLR), which allows users to train their personalized models locally in a collaborative manner. DCLR significantly reduces the local models’ dependence on the cloud for training, and can be used to expand arbitrary centralized recommendation models. To counteract the sparsity of on-device user data when learning each local model, we design two self-supervision signals to pretrain the POI representations on the server with geographical and categorical correlations of POIs. To facilitate collaborative learning, we innovatively propose to incorporate knowledge from either geographically or semantically similar users into each local model with attentive aggregation and mutual information maximization. The collaborative learning process makes use of communications between devices while requiring only minor engagement from the central server for identifying user groups, and is compatible with common privacy preservation mechanisms like differential privacy. We evaluate DCLR with two real-world datasets, where the results show that DCLR outperforms state-of-the-art on-device frameworks and yields competitive results compared with centralized counterparts.
As a step beyond traditional personalized recommendation, group recommendation is the task of suggesting items that can satisfy a group of users. In group recommendation, the core is to design preference aggregation functions to obtain a quality summary of all group members' preferences. Such user and group preferences are commonly represented as points in the vector space (i.e., embeddings), where multiple user embeddings are compressed into one to facilitate ranking for group-item pairs. However, the resulted group representations, as points, lack adequate flexibility and capacity to account for the multi-faceted user preferences. Also, the point embedding-based preference aggregation is a less faithful reflection of a group's decision-making process, where all users have to agree on a certain value in each embedding dimension instead of a negotiable interval. In this paper, we propose a novel representation of groups via the notion of hypercubes, which are subspaces containing innumerable points in the vector space. Specifically, we design the hypercube recommender (CubeRec) to adaptively learn group hypercubes from user embeddings with minimal information loss during preference aggregation, and to leverage a revamped distance metric to measure the affinity between group hypercubes and item points. Moreover, to counteract the long-standing issue of data sparsity in group recommendation, we make full use of the geometric expressiveness of hypercubes and innovatively incorporate self-supervision by intersecting two groups. Experiments on four real-world datasets have validated the superiority of CubeRec over state-of-the-art baselines. CCS CONCEPTS• Information systems → Recommender systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.