Due to substantial morbidity and high complications, diabetes mellitus is considered as the third “killer” in the world. A search for alternative antidiabetic drugs from herbs or fungi is highly demanded. Our present study aims to investigate the antidiabetic activities of Cordyceps militaris on diet-streptozotocin-induced type 2 diabetes mellitus in rats. Diabetic rats were orally administered with water extract or alcohol extract at 0.05 g/kg and 2 g/kg for 3 weeks, and then, the factors levels related to blood glucose, lipid, free radicals, and even nephropathy were determined. Pathological alterations on liver and kidney were examined. Data showed that, similar to metformin, Cordyceps militaris extracts displayed a significant reduction in blood glucose levels by promoting glucose metabolism and strongly suppressed total cholesterol and triglycerides concentration in serum. Cordyceps militaris extracts exhibit antioxidative effects indicated by normalized superoxide dismutase and glutathione peroxidase levels. The inhibitory effects on blood urea nitrogen, creatinine, uric acid, and protein revealed the protection of Cordyceps militaris extracts against diabetic nephropathy, which was confirmed by pathological morphology reversion. Collectively, Cordyceps militaris extract, a safe pharmaceutical agent, presents excellent antidiabetic and antinephropathic activities and thus has great potential as a new source for diabetes treatment.
We present an economical, facile and effective microwave pyrolysis approach to synthesize highly amino-functionalized fluorescent carbon nitride dots (CNDs). The formation and the functionalization of CNDs was accomplished simultaneously through the dehydration of chitosan. It is suggested that these CNDs have good water solublility and exhibit strong fluorescence.
The activating transcription factor 5 (ATF5) is highly expressed in many kinds of tumors including glioblastoma and breast cancers, but its expression in epithelial ovarian neoplasms has not been investigated. Here, we show that ATF5 is highly expressed in the majority of epithelial ovarian cancer samples (43/60) as compared with benign ovarian tumor tissues (4/13) and normal ovarian tissues (1/10). Furthermore, we found that ATF5 expression significantly correlated with advanced clinical stage (P<0.05) and poor differentiation of epithelial ovarian carcinomas (P<0.05). Previous studies suggested that ATF5 is required for the survival of cancer cells, but the mechanisms by which ATF5 regulates genes and promotes cell survival are not clear. Our data additionally demonstrated that interference with the function of ATF5 could markedly increase the apoptosis of ovarian cancer cells and identified B-cell leukemia lymphoma-2 as an ATF5-targeted apoptosis-related gene. These findings may provide potential therapeutic application in epithelial ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.