Abstract. Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin (2000). It was shown in that paper that SDC methods can achieve arbitrary high order accuracy and possess nice stability properties. Their SDC methods are constructed with low order integrators, such as forward Euler or backward Euler, and are able to handle stiff and non-stiff terms in the ODEs. In this paper, we use high order Runge-Kutta (RK) integrators to construct a family of related methods, which we refer to as integral deferred correction (IDC) methods. The distribution of quadrature nodes is assumed to be uniform, and the corresponding local error analysis is given. The smoothness of the error vector associated with an IDC method, measured by the discrete Sobolev norm, is a crucial tool in our analysis. The expected order of accuracy is demonstrated through several numerical examples. Superior numerical stability and accuracy regions are observed when high order RK integrators are used to construct IDC methods.
Abstract. In this paper, we develop a class of high order conservative semi-Lagrangian (SL) discontinuous Galerkin (DG) methods for solving multi-dimensional linear transport equations. The methods rely on a characteristic Galerkin weak formulation, leading to L 2 stable discretizations for linear problems. Unlike many existing SL methods, the high order accuracy and mass conservation of the proposed methods are realized in a non-splitting manner. Thus, the detrimental splitting error, which is known to significantly contaminate long term transport simulations, will be not incurred. One key ingredient in the scheme formulation, borrowed from CSLAM [Lauritzen, Nair & Ullrich, 2010], is the use of Green's theorem which allows us to convert volume integrals into a set of line integrals. The resulting line integrals are much easier to approximate with high order accuracy, hence facilitating the implementation. Another novel ingredient is the construction of quadratic curves in approximating sides of upstream cell, leading to quadratic-curved quadrilateral upstream cells. Formal third order accuracy is obtained by such a construction. The desired positivity-preserving property is further attained by incorporating a high order bound-preserving filter. To assess the performance of the proposed methods, we test and compare the numerical schemes with a variety of configurations for solving several benchmark transport problems with both smooth and nonsmooth solutions. The efficiency and efficacy are numerically verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.