Chronic apical periodontitis (CAP) is defined as chronic inflammation of the dental pulp and root canal system. Porphyromonas endodontalis lipopolysaccharide ( P. endodontalis LPS) plays an important role in inducing an inflammatory response in CAP. microRNA-146a (miR-146a) is a key regulator of inflammation and is induced by LPS. Hairy and enhancer-of-split related with YRPW motif 2 (Hey2) has been confirmed to be induced by the Notch signaling pathway, which is involved in tooth development, pulp regeneration, and repair after injury. Our study aimed to investigate the functional role of miR-146a via the targeting of Hey2 in CAP as well as the underlying mechanism. Compared with 13 healthy controls, miR-146a and Hey2 expressions were significantly higher in 20 patients with CAP. In addition, miR-146a, Hey2, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α expressions were significantly increased in MC3T3-E1 cells stimulated with different concentrations (0-20 μg/mL) of P. endodontalis LPS for different amounts of time (0-48 hours). Moreover, miR-146a, which acts as an anti-inflammatory mediator, negatively regulated the expression of IL-6, IL-1β, and TNF-α, and Hey2 was confirmed as a target gene of miR-146a by a luciferase reporter assay. Hey2 also negatively regulated miR-146a, IL-6, IL-1β, and TNF-α expressions, and P. endodontalis LPS strongly induced Hey2 recruitment to the IL-6 promoter (-400 ~ -200 bp). These findings suggest that miR-146a and Hey2 form a mutual negative feedback regulatory loop, demonstrating a novel mechanism that regulates inflammatory responses in CAP.
Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L−1
P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.