Intrinsic and evasive antiangiogenic drug (AAD) resistance is frequently developed in cancer patients, and molecular mechanisms underlying AAD resistance remain largely unknown. Here we describe AAD-triggered, lipid-dependent metabolic reprogramming as an alternative mechanism of AAD resistance. Unexpectedly, tumor angiogenesis in adipose and non-adipose environments is equally sensitive to AAD treatment. AAD-treated tumors in adipose environment show accelerated growth rates in the presence of a minimal number of microvessels. Mechanistically, AAD-induced tumor hypoxia initiates the fatty acid oxidation metabolic reprogramming and increases uptake of free fatty acid (FFA) that stimulates cancer cell proliferation. Inhibition of carnitine palmitoyl transferase 1A (CPT1) significantly compromises the FFA-induced cell proliferation. Genetic and pharmacological loss of CPT1 function sensitizes AAD therapeutic efficacy and enhances its anti-tumor effects. Together, we propose an effective cancer therapy concept by combining drugs that target angiogenesis and lipid metabolism.
Taiwan has experienced several outbreaks of enterovirus 71 (EV71) infections since 1998. This study examined the quantitative relationship between specific cytokines in the cerebrospinal fluid (CSF) and the severity of EV71 brain stem encephalitis (BE), and investigated whether the CSF cytokine response differed from that to uncomplicated echovirus meningitis (EM). The study included 57 children with EV71 BE, of whom 24 had isolated BE, 24 had autonomic nervous system (ANS) dysregulation, and nine had pulmonary oedema (PE), and 15 children with EM. All were confirmed by virus culture. Mean CSF glucose, total protein and lactate levels were increased significantly in association with the severity of EV71 BE. The mean CSF concentration of interleukin (IL)-1beta in children with EV71 PE was significantly higher than in those with isolated BE. IL-6 and interferon (IFN)-gamma levels were significantly higher for EV71 PE and ANS dysregulation than for isolated BE. In contrast, EM was associated with high levels of IL-1beta and low levels of IFN-gamma. Cytokines in the central nervous system, as well as in blood, appear to be involved in the pathogenesis of EV71 BE.
Two-dimensional nanomaterial-based photothermal therapy (PTT) is currently under intensive investigation as a promising approach toward curative cancer treatment. However, high toxicity, moderate efficacy, and low uniformity in shape remain critical unresolved issues that hamper their clinical application. Thus, there is an urgent need for developing versatile nanomaterials to meet clinical expectations. To achieve this goal, we developed a stable, highly uniform in size, and nontoxic nanomaterials made of tellurium-selenium (TeSe)–based lateral heterojunction. Systemic delivery of TeSe nanoparticles in mice showed highly specific accumulation in tumors relative to other healthy tissues. Upon exposure to light, TeSe nanoparticles nearly completely eradicated lung cancer and hepatocellular carcinoma in preclinical models. Consistent with tumor suppression, PTT altered the tumor microenvironment and induced immense cancer cell apoptosis. Together, our findings demonstrate an exciting and promising PTT-based approach for cancer eradication.
FGF-2 displays multifarious functions in regulation of angiogenesis and vascular remodeling. However, effective drugs for treating FGF-2 + tumors are unavailable. Here we show that FGF-2 modulates tumor vessels by recruiting NG2 + pricytes onto tumor microvessels through a PDGFRβ-dependent mechanism. FGF-2 + tumors are intrinsically resistant to clinically available drugs targeting VEGF and PDGF. Surprisingly, dual targeting the VEGF and PDGF signaling produces a superior antitumor effect in FGF-2 + breast cancer and fibrosarcoma models. Mechanistically, inhibition of PDGFRβ ablates FGF-2-recruited perivascular coverage, exposing anti-VEGF agents to inhibit vascular sprouting. These findings show that the offtarget FGF-2 is a resistant biomarker for anti-VEGF and anti-PDGF monotherapy, but a highly beneficial marker for combination therapy. Our data shed light on mechanistic interactions between various angiogenic and remodeling factors in tumor neovascularization. Optimization of antiangiogenic drugs with different principles could produce therapeutic benefits for treating their resistant off-target cancers.
Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. Clarification of the detailed mechanisms underlying LNM may provide potential clinical therapeutic targets for CC patients with LNM. However, the molecular mechanism of LNM in CC is unclear. In the present study, we demonstrated that fatty acid synthase (FASN), one of the key enzymes in lipid metabolism, had upregulated expression in the CC samples and was correlated with LNM. Moreover, multivariate Cox proportional hazards analysis identified FASN as an independent prognostic factor of CC patients. Furthermore, gain-of-function and loss-of-function approaches showed that FASN promoted CC cell migration, invasion, and lymphangiogenesis. Mechanistically, on the one hand, FASN could regulate cholesterol reprogramming and then activate the lipid raft-related c-Src/AKT/FAK signaling pathway, leading to enhanced cell migration and invasion. On the other hand, FASN induced lymphangiogenesis by secreting PDGF-AA/IGFBP3. More importantly, knockdown of FASN with FASN shRNA or the inhibitors C75 and Cerulenin dramatically diminished LNM in vivo, suggesting that FASN plays an essential role in LNM of CC and the clinical application potential of FASN inhibitors. Taken together, our findings uncover a novel molecular mechanism in LNM of CC and identify FASN as a novel prognostic factor and potential therapeutic target for LNM in CC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.